Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #24 Feb 26 2023 17:54:55
%S 7,14,63,80,224,285,351,363,475,860,902,1088,1479,2013,2023,3478,3689,
%T 3925,5984,6715,8493,9456,13224,15520,17227,18569,19502,20490,21804,
%U 24435,24476,27335,31899,32390,35815,37406,37582,41876,49468,50609,54137,57239
%N Numbers k such that k + sum of its prime factors = (k+1) + sum of its prime factors.
%C If p, (3/2)*(p+1), (3/2)*(p^2+p)+1 and (3/2)*(p^2+1)+2*p are all prime, then (3/2)*p*(3*p^2+4*p+3) is a term. The Generalized Bunyakovsky Conjecture implies that there are infinitely many of these. - _Robert Israel_, Apr 15 2022
%H Robert Israel, <a href="/A020700/b020700.txt">Table of n, a(n) for n = 1..2500</a>
%e A075254(7) = 7+7 = 14 and A075254(8) = 8+2+2+2 = 14, so 7 is in the sequence.
%t SequencePosition[Table[n+Total[Times@@@FactorInteger[n]],{n,58000}],{x_,x_}][[;;,1]] (* _Harvey P. Dale_, Feb 26 2023 *)
%o (PARI) A075254(n) = my(f = factor(n)); n + sum(i=1, #f~, f[i,1]*f[i,2]);
%o isok(n) = A075254(n) == A075254(n+1); \\ _Michel Marcus_, Jun 05 2014
%o (Python)
%o from sympy import factorint
%o from itertools import count, islice
%o def sopf(n): return sum(p*e for p, e in factorint(n).items())
%o def agen(): # generator of terms
%o sopfkplus1 = 2
%o for k in count(2):
%o sopfk, sopfkplus1 = sopfkplus1, sopf(k+1)
%o if k + sopfk == k + 1 + sopfkplus1: yield k
%o print(list(islice(agen(), 42))) # _Michael S. Branicky_, Apr 15 2022
%Y Cf. A020905, A228126.
%K easy,nonn
%O 1,1
%A _Enoch Haga_
%E More terms from _Michel Marcus_, Jun 05 2014