login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Least quadratic nonresidue modulo n (with n >= 3).
18

%I #34 May 16 2022 22:18:41

%S 2,2,2,2,3,2,2,2,2,2,2,3,2,2,3,2,2,2,2,2,5,2,2,2,2,2,2,2,3,2,2,3,2,2,

%T 2,2,2,2,3,2,2,2,2,5,5,2,3,2,2,2,2,2,2,2,2,2,2,2,2,3,2,2,2,2,2,2,2,2,

%U 7,2,5,2,2,2,2,2,3,2,2,3,2,2,2,2,2,2,3,2,2,2,2,5,2,2,5,3,2,2,2,2,3,2,2,2,2,2,2,2

%N Least quadratic nonresidue modulo n (with n >= 3).

%C a(n) is the smallest q such that the congruence x^2 == q (mod n) has no solution 0 <= x < n, for n > 2. Note that a(n) is a prime. If n is an odd prime p, then a(p) is the smallest base b such that b^((p-1)/2) == -1 (mod p), see A053760. - _Thomas Ordowski_, Apr 24 2019

%H Amiram Eldar, <a href="/A020649/b020649.txt">Table of n, a(n) for n = 3..10000</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/QuadraticNonresidue.html">Quadratic Nonresidue</a>

%F a(prime(n)) = A053760(n) for n > 1. - _Thomas Ordowski_, Apr 24 2019

%t a[n_] := Min @ Complement[Range[n - 1], Mod[Range[n/2]^2, n]]; Table[a[n], {n, 3, 110}] (* _Amiram Eldar_, Oct 29 2020 *)

%o (PARI) residue(n,m)={local(r);r=0;for(i=0,floor(m/2),if(i^2%m==n,r=1));r}

%o A020649(n)={local(r,m);r=0;m=0;while(r==0,m=m+1;if(!residue(m,n),r=1));m} \\ _Michael B. Porter_, Apr 30 2010

%Y Cf. A053760.

%K nonn

%O 3,1

%A _David W. Wilson_