login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 4*8^n - 3*2^n.
1

%I #23 Jun 13 2015 00:48:54

%S 1,26,244,2024,16336,130976,1048384,8388224,67108096,536869376,

%T 4294964224,34359732224,274877894656,2199023230976,17592185995264,

%U 140737488257024,1125899906646016,9007199254347776,72057594037141504,576460752301850624,4611686018424242176

%N a(n) = 4*8^n - 3*2^n.

%C 3rd Chebyshev polynomial (first kind) evaluated at powers of 2.

%H Colin Barker, <a href="/A020537/b020537.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Ch#Cheby">Index entries for sequences related to Chebyshev polynomials.</a>

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (10,-16).

%F a(n) = 10*a(n-1)-16*a(n-2). - _Colin Barker_, May 03 2015

%F G.f.: (16*x+1) / ((2*x-1)*(8*x-1)). - _Colin Barker_, May 03 2015

%p with(orthopoly):seq(T(3,2^i),i=0..24);

%t Table[ChebyshevT[3,2^n],{n,1,40}] (* _Vladimir Joseph Stephan Orlovsky_, Nov 03 2009 *)

%o (PARI) a(n) = polchebyshev(3, 1, 2^n); \\ _Michel Marcus_, Dec 28 2014

%o (PARI) Vec((16*x+1)/((2*x-1)*(8*x-1)) + O(x^100)) \\ _Colin Barker_, May 03 2015

%K nonn,easy

%O 0,2

%A _Simon Plouffe_