%I #18 Sep 08 2022 08:44:44
%S 2,3,5,5,8,5,2,3,6,5,8,2,3,7,5,2,8,3,3,9,3,9,5,8,6,6,6,2,3,4,3,8,8,3,
%T 1,8,7,4,4,1,8,3,8,3,3,2,4,1,1,2,7,9,0,3,8,8,9,3,0,0,0,0,9,7,2,3,1,9,
%U 5,8,2,2,1,6,3,7,0,9,3,7,6,0,3,8,8,8,1,5,1,7,6,5,5,4,0,1,5,2,5
%N Decimal expansion of tangent of 67 degrees.
%C Also the decimal expansion of cotangent of 23 degrees. - _Ivan Panchenko_, Sep 01 2014
%H Ivan Panchenko, <a href="/A019965/b019965.txt">Table of n, a(n) for n = 1..1000</a>
%e 2.355852365823752833939586662343883187441838332411279038893000...
%t RealDigits[Tan[67 Degree],10,120][[1]] (* _Harvey P. Dale_, Oct 29 2012 *)
%o (PARI) default(realprecision, 100); tan(67*Pi/180) \\ _G. C. Greubel_, Nov 21 2018
%o (Magma) SetDefaultRealField(RealField(100)); R:= RealField(); Tan(67*Pi(R)/180); // _G. C. Greubel_, Nov 21 2018
%o (Sage) numerical_approx(tan(67*pi/180), digits=100) # _G. C. Greubel_, Nov 21 2018
%Y Cf. A019876 (sine of 67 degrees).
%K nonn,cons
%O 1,1
%A _N. J. A. Sloane_