login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A019961
Decimal expansion of tangent of 63 degrees.
1
1, 9, 6, 2, 6, 1, 0, 5, 0, 5, 5, 0, 5, 1, 5, 0, 5, 8, 2, 3, 0, 4, 6, 4, 0, 4, 2, 6, 2, 1, 1, 8, 9, 4, 9, 8, 5, 0, 5, 6, 7, 1, 0, 7, 5, 2, 5, 7, 6, 7, 3, 4, 1, 8, 7, 0, 2, 0, 9, 6, 3, 5, 7, 2, 7, 5, 6, 2, 7, 0, 3, 1, 7, 4, 8, 3, 4, 8, 7, 9, 8, 7, 8, 3, 4, 9, 9, 1, 9, 3, 0, 5, 9, 4, 9, 2, 2, 3, 6
OFFSET
1,2
COMMENTS
Also the decimal expansion of cotangent of 27 degrees. - Ivan Panchenko, Sep 01 2014
FORMULA
Equals cot(3*Pi/20) = sqrt(5) - 1 + sqrt(5 - 2*sqrt(5)). - G. C. Greubel, Nov 21 2018
EXAMPLE
1.96261050550515058230464042621189498505671...
MATHEMATICA
RealDigits[Tan[7*Pi/20], 10, 100][[1]] (* G. C. Greubel, Nov 21 2018 *)
PROG
(PARI) default(realprecision, 100); tan(7*Pi/20) \\ G. C. Greubel, Nov 21 2018
(Magma) SetDefaultRealField(RealField(100)); R:= RealField(); Tan(7*Pi(R)/20); // G. C. Greubel, Nov 21 2018
(Sage) numerical_approx(tan(7*pi/20), digits=100) # G. C. Greubel, Nov 21 2018
CROSSREFS
Cf. A019872 (sine of 63 degrees).
Sequence in context: A188528 A243257 A194182 * A327996 A357762 A093540
KEYWORD
nonn,cons
STATUS
approved