login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of sine of 15 degrees.
10

%I #42 Aug 21 2023 12:24:20

%S 2,5,8,8,1,9,0,4,5,1,0,2,5,2,0,7,6,2,3,4,8,8,9,8,8,3,7,6,2,4,0,4,8,3,

%T 2,8,3,4,9,0,6,8,9,0,1,3,1,9,9,3,0,5,1,3,8,1,4,0,0,3,2,0,7,3,1,5,0,5,

%U 6,9,7,4,7,4,8,8,0,1,9,9,6,9,2,2,3,6,7,9,7,4,6,9,4,2,4,9,6,6,5

%N Decimal expansion of sine of 15 degrees.

%C Also the imaginary part of i^(1/6). - _Stanislav Sykora_, Apr 25 2012

%H Vincenzo Librandi, <a href="/A019824/b019824.txt">Table of n, a(n) for n = 0..1000</a>

%H Mark B. Villarino, <a href="https://arxiv.org/abs/2002.07250">Legendre's Singular Modulus</a>, arXiv:2002.07250 [math.HO], 2020.

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Trigonometric_constants_expressed_in_real_radicals">Trigonometric constants expressed in real radicals</a>

%H <a href="/index/Al#algebraic_04">Index entries for algebraic numbers, degree 4</a>

%F Equals (sqrt(3)-1)/(2*sqrt(2)) = (A002194 -1) * A020765 = sin(Pi/12). - _R. J. Mathar_, Jun 18 2006

%F Equals 2F1(9/8,-1/8;1/2;3/4) / 2 = - 2F1(11/8,-3/8;1/2;3/4) / 2 = cos(5*Pi/12). - _R. J. Mathar_, Oct 27 2008

%F Equals sqrt(2 - sqrt(3))/2 = (1/2) * A101263. - _Amiram Eldar_, Aug 05 2020

%F Equals A019819 * A019894 + A019814 * A019889 = A019821 * A019896 + A019812 * A019887. - _R. J. Mathar_, Jan 27 2021

%e 0.258819045102520762348898837624048328349068901319930513814003207315...

%t RealDigits[ Sin[ Pi/12], 10, 111][[1]] (* Or *) RealDigits[(Sqrt[3] - 1)/(2 Sqrt[2]), 10, 111][[1]] (* _Robert G. Wilson v_ *)

%t RealDigits[Sin[15 Degree],10,120][[1]] (* _Harvey P. Dale_, Jul 16 2016 *)

%o (PARI) sin(Pi/12) \\ _Charles R Greathouse IV_, Apr 25 2012

%Y Cf. A002194, A020765, A101263.

%K nonn,cons

%O 0,1

%A _N. J. A. Sloane_