login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A019628
Expansion of 1/((1-4*x)*(1-7*x)*(1-12*x)).
2
1, 23, 369, 5143, 66977, 841575, 10367953, 126315191, 1529146113, 18443562247, 221980457777, 2668373663319, 32052757927009, 384859080003239, 4619891122628241, 55449769683406327, 665474773978915265
OFFSET
0,2
FORMULA
a(n) = 2*4^n/3 - 7^(n+2)/15 + 18*12^n/5. - R. J. Mathar, Nov 11 2012
a(0)=1, a(1)=23, a(2)=369; for n>2, a(n) = 23*a(n-1) -160*a(n-2) +336*a(n-3). - Vincenzo Librandi, Jul 03 2013
a(n) = 19*a(n-1) - 84*a(n-2) + 4^n. - Vincenzo Librandi, Jul 03 2013
MATHEMATICA
CoefficientList[Series[1 / ((1 - 4 x) (1 - 7 x) (1 - 12 x)), {x, 0, 20}], x] (* Vincenzo Librandi, Jul 03 2013 *)
LinearRecurrence[{23, -160, 336}, {1, 23, 369}, 30] (* G. C. Greubel, Jan 28 2018 *)
PROG
(Magma) m:=20; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/((1-4*x)*(1-7*x)*(1-12*x)))); /* or */ I:=[1, 23, 369]; [n le 3 select I[n] else 23*Self(n-1)-160*Self(n-2)+336*Self(n-3): n in [1..20]]; // Vincenzo Librandi, Jul 03 2013
(PARI) x='x+O('x^30); Vec(1/((1-4*x)*(1-7*x)*(1-12*x))) \\ G. C. Greubel, Jan 28 2018
CROSSREFS
Cf. A021894 (partial sums).
Sequence in context: A021629 A019869 A021294 * A018091 A021279 A018071
KEYWORD
nonn,easy
STATUS
approved