login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A019623
Expansion of 1/((1-4*x)*(1-7*x)*(1-11*x)).
2
1, 22, 335, 4400, 53661, 628122, 7178395, 80862100, 902846921, 10025125022, 110934086055, 1224883116600, 13505988249781, 148791855626722, 1638292574483315, 18032294531183900, 198432777621062241
OFFSET
0,2
FORMULA
a(n) = 4^(n+2)/21 + 11^(n+2)/28 - 7^(n+2)/12. - R. J. Mathar, Nov 11 2012
a(0)=1, a(1)=22, a(2)=335; for n>2, a(n)= 22*a(n-1) -149*a(n-2) +308*a(n-3). - Vincenzo Librandi, Jul 03 2013
a(n) = 18*a(n-1) -77*a(n-2) +4^n. - Vincenzo Librandi, Jul 03 2013
E.g.f.: exp(4*x)*(64 - 343*exp(3*x) + 363*exp(7*x))/84. - Stefano Spezia, Feb 03 2021
MATHEMATICA
CoefficientList[Series[1 / ((1 - 4 x) (1 - 7 x) (1 - 11 x)), {x, 0, 20}], x] (* Vincenzo Librandi, Jul 03 2013 *)
LinearRecurrence[{22, -149, 308}, {1, 22, 335}, 30] (* G. C. Greubel, Jan 28 2018 *)
PROG
(Magma) m:=20; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/((1-4*x)*(1-7*x)*(1-11*x)))); /* or */ I:=[1, 22, 335]; [n le 3 select I[n] else 22*Self(n-1)-149*Self(n-2)+308*Self(n-3): n in [1..20]]; // Vincenzo Librandi, Jul 03 2013
(PARI) x='x+O('x^30); Vec(1/((1-4*x)*(1-7*x)*(1-11*x))) \\ G. C. Greubel, Jan 28 2018
CROSSREFS
Cf. A021884 (partial sums).
Sequence in context: A048795 A068186 A021284 * A021794 A348134 A223812
KEYWORD
nonn,easy
STATUS
approved