login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = n*(n-1)^4/2.
4

%I #39 Feb 13 2023 02:51:35

%S 0,0,1,24,162,640,1875,4536,9604,18432,32805,55000,87846,134784,

%T 199927,288120,405000,557056,751689,997272,1303210,1680000,2139291,

%U 2693944,3358092,4147200,5078125,6169176,7440174,8912512,10609215,12555000,14776336,17301504,20160657

%N a(n) = n*(n-1)^4/2.

%C a(n) = n(n-1)^4/2 is half the number of colorings of 5 points on a line with n colors. - _R. H. Hardin_, Feb 23 2002

%H Vincenzo Librandi, <a href="/A019583/b019583.txt">Table of n, a(n) for n = 0..1000</a>

%H Milan Janjic and Boris Petkovic, <a href="http://arxiv.org/abs/1301.4550">A Counting Function</a>, arXiv 1301.4550 [math.CO], 2013.

%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (6,-15,20,-15,6,-1).

%F Sum_{j>=2} 1/a(j) = hypergeom([1, 1, 1, 1, 1], [ 2, 2, 2, 3], 1) = -2 + 2*zeta(2) - 2*zeta(3) + 2*zeta(4). - _Stephen Crowley_, Jun 28 2009

%F G.f.: x^2*(1 + 18*x + 33*x^2 + 8*x^3)/(1 - x)^6. - _Colin Barker_, Feb 23 2012

%F From _Amiram Eldar_, Feb 13 2023: (Start)

%F a(n) = A101362(n-1)/2.

%F Sum_{n>=2} (-1)^n/a(n) = 2 + Pi^2/6 + 7*Pi^4/360 - 4*log(2) - 3*zeta(3)/2. (End)

%t CoefficientList[Series[x^2*(1+18*x+33*x^2+8*x^3)/(1-x)^6,{x,0,40}],x] (* _Vincenzo Librandi_, Apr 20 2012 *)

%t a[n_] := n*(n - 1)^4/2; Array[a, 30, 0] (* _Amiram Eldar_, Feb 13 2023 *)

%o (Magma) [n*(n-1)^4/2: n in [0..30]]; // _Vincenzo Librandi_, Apr 20 2012

%Y Cf. A101362.

%K nonn,easy

%O 0,4

%A _N. J. A. Sloane_