Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #34 Jul 19 2024 03:13:32
%S 1,2,2,6,18,3,24,180,48,4,120,2100,800,100,5,720,28800,14700,2250,180,
%T 6,5040,458640,301350,52920,5292,294,7,40320,8361360,6867840,1342600,
%U 153664,10976,448,8,362880,172141200,172872000,36991080,4644864,387072,20736,648,9
%N Place n distinguishable balls in n boxes (in n^n ways); let T(n,k) = number of ways that the maximum in any box is k, for 1 <= k <= n; sequence gives triangle of numbers T(n,k).
%C T(n,k) is the number of endofunctions on [n] such that the maximal cardinality of the nonempty preimages equals k. - _Alois P. Heinz_, Jul 31 2014
%H Alois P. Heinz, <a href="/A019575/b019575.txt">Rows n = 1..141, flattened</a>
%F A019575(x, z) = Sum ( A049009(p)) where x = A036042(p), z = A049085(p) - _Alford Arnold_.
%F From _Robert Gerbicz_, Aug 19 2010: (Start)
%F Let f(n,k,b) = number of ways to place b balls to n boxes, where the max in any box is not larger than k. Then T(n,k) = f(n,k,n) - f(n,k-1,n). We have:
%F f(n, k, b)=local(i); if(n==0, return(b==0));return(sum(i=0, min(k, b), binomial(b, i)*f(n-1, k, b-i))).
%F T(n,k) = f(n,k,n) - f(n,k-1,n).
%F (end)
%e Triangle begins:
%e 1;
%e 2, 2;
%e 6, 18, 3;
%e 24, 180, 48, 4;
%e 120, 2100, 800, 100, 5;
%e 720, 28800, 14700, 2250, 180, 6;
%e 5040, 458640, 301350, 52920, 5292, 294, 7;
%e 40320, 8361360, 6867840, 1342600, 153664, 10976, 448, 8;
%e 362880, 172141200, 172872000, 36991080, 4644864, 387072, 20736, 648, 9;
%e ...
%p b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
%p add(b(n-j, i-1, k)/j!, j=0..min(k, n))))
%p end:
%p T:= (n, k)-> n!* (b(n$2, k) -b(n$2, k-1)):
%p seq(seq(T(n, k), k=1..n), n=1..12); # _Alois P. Heinz_, Jul 29 2014
%t f[0, _, b_] := Boole[b == 0]; f[n_, k_, b_] := f[n, k, b] = Sum[ Binomial[b, i]*f[n - 1, k, b - i], {i, 0, Min[k, b]}]; t[n_, k_] := f[n, k, n] - f[n, k - 1, n]; Flatten[ Table[ t[n, k], {n, 1, 9}, {k, 1, n}]] (* _Jean-François Alcover_, Mar 09 2012, after _Robert Gerbicz_ *)
%o (PARI)
%o /*setup memoization table for args <= M. Could be done dynamically inside f() */
%o M=10;F=vector(M,i,vector(M,i,vector(M)));
%o f(n,k,b)={ (!n||!b||!k) & return(!b); F[n][k][b] & return(F[n][k][b]);
%o F[n][k][b]=sum(i=0,min(k,b),binomial(b,i)*f(n-1,k,b-i)) }
%o T(n,k)=f(n,k,n)-f(n,k-1,n)
%o for(n=1,9,print(vector(n,k,T(n,k))))
%o \\ _M. F. Hasler_, Aug 19 2010; Based on _Robert Gerbicz_'s code I suggest the following (very naively) memoized version of "f"
%Y Cf. A019576. See A180281 for the case when the balls are indistinguishable.
%Y Rows sums give A000312.
%Y Cf. A245687.
%K nonn,tabl,easy,nice
%O 1,2
%A Lee Corbin (lcorbin(AT)tsoft.com)
%E Edited by _N. J. A. Sloane_, Sep 06 2010