%I #30 Jun 24 2022 13:58:48
%S 1,2,5,16,67
%N Number of simplices in minimal decomposition of an n-cube.
%D H. T. Croft, K. J. Falconer and R. K. Guy, Unsolved Problems in Geometry, Section C9.
%D R. K. Guy, What is the simplexity of the d-cube?, Amer. Math. Monthly, 91:10 (1984), 628-629.
%H A. Bliss, F. E. Su, <a href="http://arxiv.org/abs/math/0310142">Lower bounds for simplicial covers and triangulations of cubes</a>, arXiv:math/0310142 [math.CO], 2003 (see Table 1 page 4).
%H A. Bliss, F. E. Su. <a href="https://doi.org/10.1007/s00454-004-1128-0">Lower bounds for simplicial covers and triangulations of cubes</a>, Discrete Comput. Geom. 33 (2005), 669-686.
%H R. B. Hughes and M. R. Anderson, <a href="http://dx.doi.org/10.1016/0012-365X(95)00075-8">Simplexity of the cube</a>, Discrete Math., 158(1-3):99-150, 1996.
%H John F. Sallee, <a href="http://dx.doi.org/10.1016/0166-218X(82)90041-5">A note on minimal triangulations of an n-cube</a>, Discrete Appl. Math. 4 (1982), no. 3, 211--215. MR0675850 (84g:52019).
%H John F. Sallee, <a href="http://dx.doi.org/10.1137/0605039">The middle-cut triangulations of the n-cube</a>, SIAM J. Algebraic Discrete Methods 5 (1984), no. 3, 407--419. MR0752044 (86c:05054). See Table 2.
%H John F. Sallee, <a href="http://dx.doi.org/10.1016/0012-365X(82)90190-X">A triangulation of the n-cube</a>, Discrete Math. 40 (1982), no. 1, 81--86. MR0676714 (84d:05065b).
%Y Other sequences dealing with different ways to attack this problem. They give further references: A019503, A019504, A166932, A166932, A239912, A275518.
%Y See also A094294, A238820, A238821.
%K nonn,hard,nice,more
%O 1,2
%A _N. J. A. Sloane_