login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of 4-ary search trees on n keys.
0

%I #20 Feb 19 2016 05:14:45

%S 1,1,1,1,4,10,20,47,128,340,868,2275,6188,16922,46112,126613,351568,

%T 981622,2747876,7723250,21811856,61828886,175752728,500984606,

%U 1432111244,4104175970,11787811340,33926475162,97837209036,282662156478,818022923184,2371103693427

%N Number of 4-ary search trees on n keys.

%H J. A. Fill and R. P. Dobrow, <a href="http://journals.cambridge.org/article_S0963548397003118">The number of m-ary search trees on n keys</a>, Combin. Probab. Comput. 6 (1997), 435-453.

%H <a href="/index/Ro#rooted">Index entries for sequences related to rooted trees</a>

%p A:= proc(n) option remember; if n=0 then 1 else convert(series(sum(x^i, i=0..2)+ x^3*A(n-1)^4, x=0,n+1), polynom) fi end: a:= n-> coeff(A(n), x,n): seq(a(n), n=0..40); # _Alois P. Heinz_, Aug 22 2008

%t A[n_] := A[n] = If[n==0, 1, Series[1 + x + x^2 + x^3*A[n-1]^4, {x, 0, n+1}] // Normal]; a[n_] := Coefficient[A[n], x, n]; Table[a[n], {n, 0, 40}] (* _Jean-François Alcover_, Feb 19 2016, after _Alois P. Heinz_ *)

%K nonn

%O 0,5

%A James Fill (jimfill(AT)jhu.edu)

%E More terms from _Alois P. Heinz_, Aug 22 2008