login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A019498 Number of 4-ary search trees on n keys. 0

%I

%S 1,1,1,1,4,10,20,47,128,340,868,2275,6188,16922,46112,126613,351568,

%T 981622,2747876,7723250,21811856,61828886,175752728,500984606,

%U 1432111244,4104175970,11787811340,33926475162,97837209036,282662156478,818022923184,2371103693427

%N Number of 4-ary search trees on n keys.

%H J. A. Fill and R. P. Dobrow, <a href="http://journals.cambridge.org/article_S0963548397003118">The number of m-ary search trees on n keys</a>, Combin. Probab. Comput. 6 (1997), 435-453.

%H <a href="/index/Ro#rooted">Index entries for sequences related to rooted trees</a>

%p A:= proc(n) option remember; if n=0 then 1 else convert(series(sum(x^i, i=0..2)+ x^3*A(n-1)^4, x=0,n+1), polynom) fi end: a:= n-> coeff(A(n), x,n): seq(a(n), n=0..40); # _Alois P. Heinz_, Aug 22 2008

%t A[n_] := A[n] = If[n==0, 1, Series[1 + x + x^2 + x^3*A[n-1]^4, {x, 0, n+1}] // Normal]; a[n_] := Coefficient[A[n], x, n]; Table[a[n], {n, 0, 40}] (* _Jean-Fran├žois Alcover_, Feb 19 2016, after _Alois P. Heinz_ *)

%K nonn

%O 0,5

%A James Fill (jimfill(AT)jhu.edu)

%E More terms from _Alois P. Heinz_, Aug 22 2008

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 22 20:34 EDT 2023. Contains 361433 sequences. (Running on oeis4.)