login
Let sigma_m (n) be result of applying sum-of-divisors function m times to n; call n (m,k)-perfect if sigma_m (n) = k*n; sequence gives the (2,13)-perfect numbers.
9

%I #33 Feb 27 2020 06:03:07

%S 57120,932064,3932040,251650560

%N Let sigma_m (n) be result of applying sum-of-divisors function m times to n; call n (m,k)-perfect if sigma_m (n) = k*n; sequence gives the (2,13)-perfect numbers.

%C See also the Cohen-te Riele links under A019276.

%C No other terms < 5*10^11. - _Jud McCranie_, Feb 08 2012

%C 11383810648416 is also a term. See comment in A019278. - _Michel Marcus_, May 15 2016

%C a(5) > 4*10^12. - _Giovanni Resta_, Feb 26 2020

%C 50248050278400, 117245450649600, 86575337046016000 are also terms. - _Michel Marcus_, Feb 27 2020

%H Graeme L. Cohen and Herman J. J. te Riele, <a href="http://projecteuclid.org/euclid.em/1047565640">Iterating the sum-of-divisors function</a>, Experimental Mathematics, 5 (1996), pp. 93-100.

%o (PARI) isok(n) = sigma(sigma(n))/n == 13; \\ _Michel Marcus_, May 15 2016

%Y Cf. A019276, A019278, A019279, A019281, A019282, A019283, A019284, A019285, A019286, A019287, A019288, A019289, A019291.

%K nonn,more

%O 1,1

%A _N. J. A. Sloane_.