login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Let sigma_m (n) be result of applying sum-of-divisors function m times to n; call n (m,k)-perfect if sigma_m (n) = k*n; sequence gives the (2,9)-perfect numbers.
10

%I #41 Dec 27 2021 21:09:39

%S 168,10752,331520,691200,1556480,1612800,106151936,5099962368,

%T 4010593484800

%N Let sigma_m (n) be result of applying sum-of-divisors function m times to n; call n (m,k)-perfect if sigma_m (n) = k*n; sequence gives the (2,9)-perfect numbers.

%C See also the Cohen-te Riele links under A019276.

%C No other terms < 5*10^11. - _Jud McCranie_, Feb 08 2012

%C 4010593484800 is also a term. See comment in A019278. - _Michel Marcus_, May 15 2016

%H Graeme L. Cohen and Herman J. J. te Riele, <a href="http://projecteuclid.org/euclid.em/1047565640">Iterating the sum-of-divisors function</a>, Experimental Mathematics, 5 (1996), pp. 93-100.

%o (PARI) isok(n) = sigma(sigma(n))/n == 9; \\ _Michel Marcus_, May 12 2016

%Y Cf. A000668, A019278, A019279, A019281, A019282, A019283, A019284, A019285, A019286, A019287, A019288, A019289, A019290, A019291.

%K nonn,more

%O 1,1

%A _N. J. A. Sloane_

%E a(8) by _Jud McCranie_, Jan 28 2012

%E a(9) from _Giovanni Resta_, Feb 26 2020