Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #37 Jul 13 2023 09:29:00
%S 3,5,8,12,17,24,33,45,61,82,110,147,196,261,347,461,612,812,1077,1428,
%T 1893,2509,3325,4406,5838,7735,10248,13577,17987,23829,31568,41820,
%U 55401,73392,97225,128797,170621,226026,299422,396651,525452,696077,922107
%N Define the generalized Pisot sequence T(a(0),a(1)) by: a(n+2) is the greatest integer such that a(n+2)/a(n+1) < a(n+1)/a(n). This is T(3,5).
%C Not to be confused with the Pisot T(3,5) sequence, which is A020745. - _R. J. Mathar_, Feb 13 2016
%C Is 1 followed by this sequence equal to A167385? - _Bruno Berselli_, Feb 17 2016
%H Reinhard Zumkeller, <a href="/A018917/b018917.txt">Table of n, a(n) for n = 0..1000</a>
%H D. W. Boyd, <a href="http://www.researchgate.net/publication/258834801">Linear recurrence relations for some generalized Pisot sequences</a>, Advances in Number Theory ( Kingston ON, 1991) 333-340, Oxford Sci. Publ., Oxford Univ. Press, New York, 1993.
%H <a href="/index/Ph#Pisot">Index entries for Pisot sequences</a>
%F Conjecture: a(n)=a(n-1)+a(n-2)-a(n-4). G.f.: (3+2*x-x^3)/(1-x)/(1-x^2-x^3). [_Colin Barker_, Feb 16 2012]
%F Conjecture: a(n) = a(n-1) + A000931(n+8). - _Reinhard Zumkeller_, Dec 30 2012
%t RecurrenceTable[{a[1] == 3, a[2] == 5, a[n] == Ceiling[a[n-1]^2/a[n-2]] - 1}, a, {n, 50}] (* _Bruno Berselli_, Feb 17 2016 *)
%o (PARI) T(a0, a1, maxn) = a=vector(maxn); a[1]=a0; a[2]=a1; for(n=3, maxn, a[n]=ceil(a[n-1]^2/a[n-2])-1); a
%o T(3, 5, 60) \\ _Colin Barker_, Feb 14 2016
%o (Magma) Tiv:=[3,5]; [n le 2 select Tiv[n] else Ceiling(Self(n-1)^2/Self(n-2))-1: n in [1..50]]; // _Bruno Berselli_, Feb 17 2016
%K nonn
%O 0,1
%A _R. K. Guy_