Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #79 Aug 12 2024 13:20:21
%S 1,4,17,73,314,1351,5813,25012,107621,463069,1992482,8573203,36888569,
%T 158723236,682950473,2938582657,12644061866,54404561359,234090621197,
%U 1007239421908,4333925245949,18647907964021,80237764082258,345245096519227,1485512190349361
%N a(n+2) = 5*a(n+1) - 3*a(n).
%C Define the sequence S(a(0),a(1)) by a(n+2) is the least integer such that a(n+2)/a(n+1) > a(n+1)/a(n) for n >= 0. This is S(1,4).
%C a(n) is the number of compositions of n when there are 4 types of ones. - _Milan Janjic_, Aug 13 2010
%C a(n)/a(n-1) tends to (5 + sqrt(13))/2 = 4.30277563... . - _Gary W. Adamson_, Jul 30 2013
%C a(n) counts closed walks on K_2 containing four loops on the index vertex and one loop on the other. Equivalently the (1,1)_entry of A^(n) where the adjacency matrix of digraph is A=(4,1;1,1). - _David Neil McGrath_, Nov 05 2014
%C Number of words of length n over {0,1,...,5} in which binary subwords appear in the form 10...0. - _Milan Janjic_, Jan 25 2017
%H Colin Barker, <a href="/A018902/b018902.txt">Table of n, a(n) for n = 0..1000</a>
%H D. W. Boyd, <a href="https://www.researchgate.net/profile/David_Boyd7/publication/262181133_Linear_recurrence_relations_for_some_generalized_Pisot_sequences_-_annotated_with_corrections_and_additions/links/00b7d536d49781037f000000.pdf">Linear recurrence relations for some generalized Pisot sequences</a>, Advances in Number Theory (Kingston ON, 1991) 333-340, Oxford Sci. Publ., Oxford Univ. Press, New York, 1993.
%H INRIA Algorithms Project, <a href="http://ecs.inria.fr/services/structure?nbr=474">Encyclopedia of Combinatorial Structures 474</a>
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (5,-3).
%H <a href="/index/Ph#Pisot">Index entries for Pisot sequences</a>
%F A member of the family of sequences defined by a(n) = (a(1)+1)*a(n-1) - (a(1)-1)*a(n-2). Alternatively, invert A007052 (invert: define b by 1 + Sum a(n)*x^n = 1/(1 - Sum b(n)*x^n)).
%F a(n+1)*a(n+1) - a(n+2)*a(n) = -3^n for n>0. - D. G. Rogers, Jul 11 2004
%F O.g.f.: (1-x)/(1-5*x+3*x^2). - _R. J. Mathar_, Nov 23 2007
%F a(n) = 4*a(n-1) + a(n-2) + a(n-3) + a(n-4) + ... + a(0). - _Gary W. Adamson_, Aug 12 2013
%F a(n) = (2^(-1-n)*((5-sqrt(13))^n*(-3+sqrt(13)) + (3+sqrt(13))*(5+sqrt(13))^n)) / sqrt(13). - _Colin Barker_, Jan 20 2017
%F E.g.f.: exp(5*x/2)*(13*cosh(sqrt(13)*x/2) + 3*sqrt(13)*sinh(sqrt(13)*x/2))/13. - _Stefano Spezia_, Jul 09 2022
%F a(n) = Fibonacci(2*n+1) + 2*Sum_{k=0..n-1} a(k)*Fibonacci(2*(n-1-k)+1). - _Greg Dresden_ and Mulong Xu, Aug 10 2024
%t LinearRecurrence[{5,-3},{1,4},40] (* _Harvey P. Dale_, Jan 14 2012 *)
%o (Magma) I:=[1, 4]; [n le 2 select I[n] else 5*Self(n-1)-3*Self(n-2): n in [1..30]]; // _Vincenzo Librandi_, Nov 05 2014
%o (PARI) Vec((1-x) / (1-5*x+3*x^2) + O(x^30)) \\ _Colin Barker_, Jan 20 2017
%Y Equals (1/3)*A081704(n+1).
%Y Cf. A006190 (shifted inverse binomial transform), A007052.
%K nonn,easy
%O 0,2
%A _R. K. Guy_, _N. J. A. Sloane_