%I #49 Jul 25 2020 16:05:05
%S 0,1,4,9,16,25,36,49,64,81,100,121,144,225,400,441,484,676,900,1444,
%T 7744,10000,11881,29929,40000,44944,55225,69696,90000,1000000,4000000,
%U 9000000,9696996,100000000,400000000,900000000,6661661161,10000000000
%N Squares using no more than two distinct digits.
%C Is 6661661161 the largest term not of the form 10^k, 4*10^k or 9*10^k? Any larger ones must have >= 22 digits. - _Robert Israel_, Dec 03 2015
%H Shawn A. Broyles, <a href="/A018885/b018885.txt">Table of n, a(n) for n = 1..85</a>
%H Alexandru Gica and Laurentiu Panaitopol, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL6/Panaitopol/panaitopol41.html">On Oblath's Problem</a>, J. Integer Seqs., Vol. 6(3), 2003, article 03.3.5.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/SquareNumber.html">Square Number</a>
%F For n > 4, a(n) = A016069(n-4)^2.
%p F:= proc(r, a, b, m)
%p # get all squares starting with r, with at most m further digits, all from {a,b} where a < b
%p local res,Ls,Us,L,U,looking;
%p if issqr(r) then res:= r else res:= NULL fi;
%p if m = 0 then return res fi;
%p Ls:= r*10^m + a*(10^m-1)/9;
%p Us:= r*10^m + b*(10^m-1)/9;
%p L:= isqrt(Ls);
%p if L^2 > Ls then L:= L-1 fi;
%p U:= isqrt(Us);
%p if U^2 < Us then U:= U+1 fi;
%p if L > U then res
%p else res, procname(10*r+a,a,b,m-1), procname(10*r+b,a,b,m-1)
%p fi
%p end proc:
%p S2:= {seq(i^2 mod 100, i=0..99)}:
%p prs:= map(t -> `if`(t < 10, {0,t},{(t mod 10),(t - (t mod 10))/10}), S2):
%p prs:= map(p -> `if`(nops(p)=1, seq(p union {s},s={$0..9} minus p), p), prs):
%p Res:= NULL:
%p for p in prs do
%p a:= min(p); b:= max(p);
%p if a > 0 then
%p Res:= Res, F(a,a,b,14);
%p fi;
%p Res:= Res, F(b,a,b,14);
%p od:
%p sort(convert({0,Res},list)); # _Robert Israel_, Dec 03 2015
%t Select[Range[0, 10^5]^2, Length@ Union@ IntegerDigits@ # <= 2 &] (* _Michael De Vlieger_, Dec 03 2015 *)
%t Select[Range[0,100000]^2,Count[DigitCount[#],0]>7&] (* _Harvey P. Dale_, Jul 25 2020 *)
%o (PARI) for (n=0, 10^6, if ( #Set(digits(n^2))<=2, print1(n^2, ", ") ) ); \\ _Michel Marcus_, May 21 2015
%Y Cf. A016069, A016070, A018884.
%K nonn,base
%O 1,3
%A _David W. Wilson_
%E 0 inserted and definition edited by _Jon E. Schoenfield_, Jan 15 2014