Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #63 Jul 12 2024 14:23:35
%S 635318657,3262811042,8657437697,10165098512,51460811217,52204976672,
%T 68899596497,86409838577,138519003152,160961094577,162641576192,
%U 264287694402,397074160625,701252453457,823372979472,835279626752
%N Numbers that are the sum of two 4th powers in more than one way.
%C Since 4th powers are squares, this is a subsequence of A024508, the analog for squares. Sequence A001235 is the analog for third powers (taxicab numbers). Sequence A255351 lists max {a,b,c,d} where a^4 + b^4 = c^4 + d^4 = a(n), while A255352 lists the whole quadruples (a,b,c,d). - _M. F. Hasler_, Feb 21 2015
%D R. K. Guy, Unsolved Problems in Number Theory, D1.
%H Mia Muessig, <a href="/A018786/b018786.txt">Table of n, a(n) for n = 1..30000</a> (terms 1..111 from Vincenzo Librandi, terms 112..4359 from Sean A. Irvine)
%H J. Leech, <a href="http://dx.doi.org/10.1017/S0305004100032850">Some solutions of Diophantine equations</a>, Proc. Camb. Phil. Soc., 53 (1957), 778-780.
%H Mia Muessig, <a href="https://github.com/PhoenixSmaug/taxicab-numbers">Julia code for finding general taxicab numbers</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/BiquadraticNumber.html">Biquadratic Number.</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/DiophantineEquation4thPowers.html">Diophantine Equation.</a>
%F A weak lower bound: a(n) >> n^2. - _Charles R Greathouse IV_, Jul 12 2024
%e a(1) = 59^4 + 158^4 = 133^4 + 134^4.
%e a(2) = 7^4 + 239^4 = 157^4 + 227^4. Note the remarkable coincidence that here all of {7, 239, 157, 227} are primes. The next larger solution with this property is 17472238301875630082 = 62047^4 + 40351^4 = 59693^4 + 46747^4. - _M. F. Hasler_, Feb 21 2015
%t Select[ Split[ Sort[ Flatten[ Table[x^4 + y^4, {x, 1, 1000}, {y, 1, x}]]]], Length[#] > 1 & ][[All, 1]] (* _Jean-François Alcover_, Jul 26 2011 *)
%o (PARI) n=4;L=[];for(b=1,999,for(a=1,b,t=a^n+b^n;for(c=a+1,sqrtn(t\2,n),ispower(t-c^n,n)||next;print1(t",")))) \\ _M. F. Hasler_, Feb 21 2015
%o (PARI) list(lim)=my(v=List()); for(a=134,sqrtnint(lim,4)-1, my(a4=a^4); for(b=sqrtnint((4*a^2 + 6*a + 4)*a,4)+1,min(sqrtnint(lim-a4,4),a), my(t=a4+b^4); for(c=a+1,sqrtnint(lim,4), if(ispower(t-c^4,4), listput(v,t); break)))); Set(v) \\ _Charles R Greathouse IV_, Jul 12 2024
%Y Subsequence of A003336 (and hence A004831) and A024508 (and hence A001481).
%Y Cf. A001235, A003336, A003824, A309762.
%K nonn
%O 1,1
%A _David W. Wilson_