login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of partitions of n into parts having a common factor.
68

%I #30 Jan 20 2018 17:27:54

%S 0,0,1,1,2,1,4,1,5,3,8,1,14,1,16,9,22,1,38,1,45,17,57,1,94,7,102,30,

%T 138,1,218,1,231,58,298,21,451,1,491,103,644,1,919,1,1005,203,1256,1,

%U 1784,15,1993,299,2439,1,3365,62,3735,492,4566,1,6252,1,6843,819,8349,107,11096

%N Number of partitions of n into parts having a common factor.

%H Alois P. Heinz, <a href="/A018783/b018783.txt">Table of n, a(n) for n = 0..10000</a>

%H L. Naughton, G. Pfeiffer, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL16/Naughton/naughton2.html">Integer Sequences Realized by the Subgroup Pattern of the Symmetric Group</a>, J. Int. Seq. 16 (2013) #13.5.8

%F a(n) = -Sum_{d|n, d<n} moebius(n/d)*A000041(d) = A000041(n) - A000837(n). - _Vladeta Jovovic_, Jun 17 2003

%p with(numtheory): with(combinat):

%p a:= n-> `if`(n=0, 0,

%p numbpart(n) -add(mobius(n/d)*numbpart(d), d=divisors(n))):

%p seq(a(n), n=0..100); # _Alois P. Heinz_, Nov 29 2011

%t A000837[n_] := Sum[ MoebiusMu[n/d]*PartitionsP[d], {d, Divisors[n]}]; a[0] = 0; a[n_] := PartitionsP[n] - A000837[n]; Table[a[n], {n, 0, 66}] (* _Jean-François Alcover_, Oct 03 2013, after _Vladeta Jovovic_ *)

%o (PARI) a(n) = - sumdiv(n, d, (d<n)*moebius(n/d)*numbpart(d)); \\ _Michel Marcus_, Oct 07 2017

%Y Cf. A000041, A000837, A083710.

%K nonn

%O 0,5

%A _David W. Wilson_