login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

The nonprime numbers: 1 together with the composite numbers, A002808.
414

%I #96 Aug 03 2024 11:46:48

%S 1,4,6,8,9,10,12,14,15,16,18,20,21,22,24,25,26,27,28,30,32,33,34,35,

%T 36,38,39,40,42,44,45,46,48,49,50,51,52,54,55,56,57,58,60,62,63,64,65,

%U 66,68,69,70,72,74,75,76,77,78,80,81,82,84,85,86,87,88

%N The nonprime numbers: 1 together with the composite numbers, A002808.

%C d(a(n)) != 2 (cf. A000005). - _Juri-Stepan Gerasimov_, Oct 17 2009

%C Number of prime divisors of a(n) (counted with multiplicity) != 1. - _Juri-Stepan Gerasimov_, Oct 30 2009

%C Largest nonprime < n-th composite. - _Juri-Stepan Gerasimov_, Oct 29 2009

%C The nonnegative nonprimes A141468 without zero; the natural nonprimes; the whole nonprimes; the counting nonprimes. If the nonprime numbers A141468 which are also the nonnegative integers A001477, then the nonprimes A141468 also called the nonnegative nonprimes. If the nonprime numbers A018252 which are also the natural (or whole or counting) numbers A000027, then the nonprimes A018252 also called the natural nonprimes, the whole nonprimes and the counting nonprimes. - _Juri-Stepan Gerasimov_, Nov 22 2009

%C Smallest nonprime > n-th nonnegative nonprime. - _Juri-Stepan Gerasimov_, Dec 04 2009

%C a(n) = A175944(A014284(n)) = A175944(A175965(n)). - _Reinhard Zumkeller_, Mar 18 2011

%D G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, p. 2.

%H N. J. A. Sloane, <a href="/A018252/b018252.txt">List of nonprimes up to 20000: Table of n, a(n) for n = 1..17738</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/MonicaSet.html">Monica Set</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/SuzanneSet.html">Suzanne Set</a>

%H <a href="/index/Cor#core">Index entries for "core" sequences</a>

%F Let b(0) = n + pi(n) and b(n+1) = n + pi(b(n)), with pi(n) = A000720(n); then a(n) is the limit value of b(n). - _Floor van Lamoen_, Oct 08 2001

%F a(n) = A137621(A137624(n)). - _Reinhard Zumkeller_, Jan 30 2008

%F A010051(a(n)) = 0. - _Reinhard Zumkeller_, Mar 31 2014

%F A239968(a(n)) = n. - _Reinhard Zumkeller_, Dec 02 2014

%p with(numtheory); sort(convert(convert([ seq(i,i=1..541) ],set) minus convert([ seq(ithprime(i),i=1..100) ],set),list));

%p seq(`if`(not isprime(n),n,NULL),n=1..88); # _Peter Luschny_, Jul 29 2009

%p A018252 := proc(n) option remember; if n = 1 then 1; else for a from procname(n-1)+1 do if not isprime(a) then return a; end if; end do; end if; end proc: # _R. J. Mathar_, Oct 22 2010

%t nonPrime[n_Integer] := FixedPoint[n + PrimePi@# &, n + PrimePi@ n]; Array[ nonPrime, 75] (* _Robert G. Wilson v_, Jan 29 2015, based on the algorithm by _Labos Elemer_ in A006508 *)

%t max = 90; Complement[Range[max], Prime[Range[PrimePi[max]]]] (* _Harvey P. Dale_, Aug 12 2011 *)

%t Join[{1}, Select[Range[100], CompositeQ]] (* _Jean-François Alcover_, Nov 07 2021 *)

%o (Magma) [n : n in [1..100] | not IsPrime(n) ];

%o (PARI) isA018252(n) = !isprime(n)

%o A018252(n) = {local(a,b);b=n;a=1;while(a!=b,a=b;b=n+primepi(a));b} \\ _Michael B. Porter_, Nov 06 2009

%o (PARI) a(n) = my(k=0); while(-n+n-=k-k=primepi(n), ); n; \\ _Ruud H.G. van Tol_, Jul 15 2024 (after code in A002808)

%o (Sage)

%o def A018252_list(n) :

%o return [k for k in (1..n) if not k.is_prime()]

%o A018252_list(88) # _Peter Luschny_, Feb 03 2012

%o (Haskell)

%o a018252 n = a018252_list !! (n-1)

%o a018252_list = filter ((== 0) . a010051) [1..]

%o -- _Reinhard Zumkeller_, Mar 31 2014

%o (GAP) A018252 := Difference([1..10^5], Filtered([1..10^5], IsPrime)); # _Muniru A Asiru_, Oct 21 2017

%o (Python)

%o from sympy import isprime

%o def ok(n): return not isprime(n)

%o print([k for k in range(1, 89) if ok(k)]) # _Michael S. Branicky_, Nov 10 2022

%o (Python)

%o from sympy import composite

%o def A018252(n): return 1 if n == 1 else composite(n-1) # _Chai Wah Wu_, Nov 15 2022

%Y Cf. A000040 (complement), A002808.

%Y Cf. A000005, A001222, A141468.

%Y Boustrophedon transforms: A230955, A230954.

%Y Cf. A010051, A239968.

%K nonn,nice,easy,core

%O 1,2

%A _N. J. A. Sloane_