login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

The 10-adic integer x = ...8212890625 satisfying x^2 = x.
39

%I #64 Feb 26 2024 02:18:15

%S 5,2,6,0,9,8,2,1,2,8,1,9,9,5,2,6,5,2,2,9,3,7,7,9,9,1,6,6,0,1,4,0,0,9,

%T 0,1,6,9,8,0,3,2,3,2,4,3,2,4,7,5,5,0,0,0,1,1,8,3,6,8,0,8,5,9,0,5,6,6,

%U 1,2,6,0,0,9,8,9,0,5,8,3,9,2,0,8,9,6,1,8,0,1,9,1,3,7,0,0,3,5,9,3,0,9,3,6,2,4,6,7

%N The 10-adic integer x = ...8212890625 satisfying x^2 = x.

%C The 10-adic numbers a and b defined in this sequence and A018248 satisfy a^2=a, b^2=b, a+b=1, ab=0. - _Michael Somos_

%D W. W. R. Ball, Mathematical Recreations & Essays, N.Y. Macmillan Co, 1947.

%D V. deGuerre and R. A. Fairbairn, Jnl. Rec. Math., No. 3, (1968), 173-179.

%D M. Kraitchik, Sphinx, 1935, p. 1.

%H Eric M. Schmidt, <a href="/A018247/b018247.txt">Table of n, a(n) for n = 0..9999</a>

%H Anthony Edey, <a href="https://web.archive.org/web/20040204000158/http://freespace.virgin.net/anthony.edey/automorph.htm">Automorphic numbers</a>, taken from Madachy's Mathematical Recreations, Dover 1979.

%H V. deGuerre and R. A. Fairbairn, <a href="/A003226/a003226.pdf">Automorphic numbers</a>, Jnl. Rec. Math., 1 (No. 3, 1968), 173-179.

%H MathOverflow, <a href="https://mathoverflow.net/questions/156301/distribution-of-digits-of-pq-adic-idempotents-aka-automorphic-numbers">Distribution of digits of pq-adic idempotents (aka “automorphic numbers”)</a>, 2014.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/AutomorphicNumber.html">Automorphic numbers</a>.

%H <a href="/index/Ar#automorphic">Index entries for sequences related to automorphic numbers</a>

%F x = 10-adic lim_{n->oo} 5^(2^n) mod 10^(n+1). - _Paul D. Hanna_, Jul 08 2006

%e x = ...0863811000557423423230896109004106619977392256259918212890625.

%t a = {5}; f[n_] := Block[{k = 0, c}, While[c = FromDigits[Prepend[a, k]]; Mod[c^2, 10^n] != c, k++ ]; a = Prepend[a, k]]; Do[ f[n], {n, 2, 105}]; Reverse[a]

%t With[{n = 150}, Reverse[IntegerDigits[PowerMod[5, 2^n, 10^n]]]] (* _IWABUCHI Yu(u)ki_, Feb 16 2024 *)

%o (PARI) a(n)=local(t=5);for(k=1,n+1,t=t^2%10^k);t\10^n \\ _Paul D. Hanna_, Jul 08 2006

%o (PARI) Vecrev(digits(lift(chinese(Mod(1, 2^100), Mod(0, 5^100))))) \\ _Seiichi Manyama_, Aug 07 2019

%Y A007185 gives associated automorphic numbers.

%Y Cf. A018248, A033819, A003226.

%Y The difference between A018248 & this sequence is A075693 and their product is A075693.

%Y The six examples given by deGuerre and Fairbairn are A055620, A054869, A018247, A018248, A259468, A259469.

%K base,nonn

%O 0,1

%A Yoshihide Tamori (yo(AT)salk.edu)

%E More terms from _David W. Wilson_

%E Edited by _David W. Wilson_, Sep 26 2002