login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A017999
Expansion of 1/((1-3x)(1-7x)(1-10x)).
1
1, 20, 279, 3370, 37841, 407640, 4281739, 44256950, 452652981, 4597133860, 46465625999, 468116448930, 4705386343321, 47223418005680, 473421066847059, 4742518890351310, 47483346499724861, 475240568299871100, 4755255406504488919, 47572502130747596090
OFFSET
0,2
FORMULA
a(n) = (4*10^(n+2) - 7^(n+3) + 3^(n+3))/84. - Yahia Kahloune, Jun 30 2013
a(0)=1, a(1)=20, a(2)=279; for n>2, a(n) = 20*a(n-1) -121*a(n-2) +210*a(n-3). - Vincenzo Librandi, Jul 02 2013
a(n) = 17*a(n-1) -70*a(n-2) +3^n. - Vincenzo Librandi, Jul 02 2013
MAPLE
a:= n-> (Matrix(3, (i, j)-> `if`(i=j-1, 1, `if`(j=1, [20, -121, 210][i], 0)))^n)[1, 1]: seq(a(n), n=0..25); # Alois P. Heinz, Jul 02 2013
MATHEMATICA
CoefficientList[Series[1 / ((1 - 3 x) (1 - 7 x) (1 - 10 x)), {x, 0, 30}], x] (* Vincenzo Librandi, Jul 02 2013 *)
PROG
(Magma) m:=20; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/((1-3*x)*(1-7*x)*(1-10*x)))); /* or */ I:=[1, 20, 279]; [n le 3 select I[n] else 20*Self(n-1)-121*Self(n-2)+210*Self(n-3): n in [1..20]]; // Vincenzo Librandi, Jul 02 2013
CROSSREFS
First differences of A021604.
Sequence in context: A018056 A021234 A021474 * A244653 A012836 A028294
KEYWORD
nonn,easy
AUTHOR
STATUS
approved