login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of 1/((1-3x)(1-6x)(1-7x)).
1

%I #24 Dec 31 2024 11:14:31

%S 1,16,175,1630,13921,112756,881875,6730810,50468341,373414096,

%T 2734771975,19868820790,143434778761,1030163245036,7367866260475,

%U 52515419443570,373250112873181,2646603979861576,18729347384947375,132324150012391150,933581363480079601

%N Expansion of 1/((1-3x)(1-6x)(1-7x)).

%H Vincenzo Librandi, <a href="/A017931/b017931.txt">Table of n, a(n) for n = 0..200</a>

%H <a href="/index/Rec">Index entries for linear recurrences with constant coefficients</a>, signature (16,-81,126).

%F a(0)=1, a(1)=16, a(2)=175; for n>2, a(n) = 16*a(n-1) -81*a(n-2) +126*a(n-3). - _Vincenzo Librandi_, Jul 02 2013

%F a(n) = 13*a(n-1) -42*a(n-2) +3^n. - _Vincenzo Librandi_, Jul 02 2013

%F a(n) = (3*7^(n+2) - 4*6^(n+2) + 3^(n+2))/12. - _Yahia Kahloune_, Jul 06 2013

%p a:= n-> (Matrix(3, (i, j)-> `if`(i=j-1, 1, `if`(j=1, [16, -81, 126][i], 0)))^n)[1, 1]: seq(a(n), n=0..25); # _Alois P. Heinz_, Jul 02 2013

%t CoefficientList[Series[1 / ((1 - 3 x) (1 - 6 x) (1 - 7 x)), {x, 0, 30}], x] (* _Vincenzo Librandi_, Jul 02 2013 *)

%o (Magma) m:=20; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/((1-3*x)*(1-6*x)*(1-7*x)))); // _Vincenzo Librandi_, Jul 02 2013

%o (Magma) I:=[1, 16, 175]; [n le 3 select I[n] else 16*Self(n-1)-81*Self(n-2)+126*Self(n-3): n in [1..20]]; // _Vincenzo Librandi_, Jul 02 2013

%K nonn,easy

%O 0,2

%A _N. J. A. Sloane_