login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A017916
Expansion of 1/((1-3x)(1-5x)(1-10x)).
1
1, 18, 229, 2562, 27061, 278058, 2818549, 28377522, 284741941, 2852272698, 28547052469, 285592329282, 2856532847221, 28568377838538, 285699029999989, 2857066572421842, 28571047129374901, 285712378448671578
OFFSET
0,2
FORMULA
a(0)=1, a(2)=18, a(3)=229, a(n) = 18*a(n-1)-95*a(n-2)+150*a(n-3). - Vincenzo Librandi, Jul 01 2013
a(n) = 15*a(n-1) -50*a(n-2) -3^n. - Vincenzo Librandi, Jul 01 2013
a(n) = (2*10^(n+2) - 7*5^(n+2) + 5*3^(n+2))/70. [Yahia Kahloune, Aug 13 2013]
MAPLE
a:= n-> (Matrix(3, (i, j)-> `if`(i=j-1, 1, `if`(j=1, [18, -95, 150][i], 0)))^n)[1, 1]: seq(a(n), n=0..25); # Alois P. Heinz, Jul 01 2013
MATHEMATICA
CoefficientList[Series[1 / ((1 - 3 x) (1 - 5 x) (1 - 10 x)), {x, 0, 30}], x] (* Vincenzo Librandi, Jul 01 2013 *)
LinearRecurrence[{18, -95, 150}, {1, 18, 229}, 20] (* Harvey P. Dale, Aug 12 2023 *)
PROG
(Magma) I:=[1, 18, 229]; [n le 3 select I[n] else 18*Self(n-1)-95*Self(n-2)+150*Self(n-3): n in [1..20]]; /* or */ m:=20; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/((1-3*x)*(1-5*x)*(1-10*x)))); // Vincenzo Librandi, Jul 01 2013
(PARI) a(n) = (2*10^(n+2) - 7*5^(n+2) + 5*3^(n+2))/70; \\ Joerg Arndt, Aug 13 2013
CROSSREFS
Sequence in context: A296854 A296941 A016312 * A016307 A193982 A021094
KEYWORD
nonn,easy
AUTHOR
STATUS
approved