%I #23 Jun 28 2023 21:49:26
%S 1,70,2415,54740,916895,12103014,131115985,1198774720,9440350920,
%T 65033528560,396704524216,2163842859360,10638894058520,47465835030320,
%U 193253756909160,721480692460864,2480089880334220,7877932561061640,23196134763125940
%N Binomial coefficients C(70,n).
%C Row 70 of A007318.
%H Nathaniel Johnston, <a href="/A017786/b017786.txt">Table of n, a(n) for n = 0..70</a> (full sequence)
%F From _G. C. Greubel_, Nov 14 2018: (Start)
%F G.f.: (1+x)^70.
%F E.g.f.: 1F1(-70; 1; -x), where 1F1 is the confluent hypergeometric function. (End)
%p seq(binomial(70,n), n=0..70); # _Nathaniel Johnston_, Jun 24 2011
%t Binomial[70, Range[0,70]] (* _G. C. Greubel_, Nov 14 2018 *)
%o (Sage) [binomial(70, n) for n in range(17)] # _Zerinvary Lajos_, May 28 2009
%o (PARI) vector(70, n, n--; binomial(70,n)) \\ _G. C. Greubel_, Nov 14 2018
%o (Magma) [Binomial(70,n): n in [0..70]]; // _G. C. Greubel_, Nov 14 2018
%Y Cf. A010926-A011001, A017765-A017785, A017787-A017816.
%K nonn,fini,full,easy
%O 0,2
%A _N. J. A. Sloane_