%I #32 Jun 28 2023 21:43:39
%S 1,50,1225,19600,230300,2118760,15890700,99884400,536878650,
%T 2505433700,10272278170,37353738800,121399651100,354860518600,
%U 937845656300,2250829575120,4923689695575,9847379391150,18053528883775,30405943383200,47129212243960
%N Binomial coefficients C(50,n).
%C Row 50 of A007318.
%H Nathaniel Johnston, <a href="/A017766/b017766.txt">Table of n, a(n) for n = 0..50</a> (full sequence)
%F From _G. C. Greubel_, Nov 13 2018: (Start)
%F G.f.: (1+x)^50.
%F E.g.f.: 1F1(-50; 1; -x), where 1F1 is the confluent hypergeometric function. (End)
%p seq(binomial(50,n), n=0..50); # _Nathaniel Johnston_, Jun 24 2011
%t Binomial[50,Range[0,50]] (* _Harvey P. Dale_, Sep 25 2014 *)
%o (Sage) [binomial(50, n) for n in range(51)] # _Zerinvary Lajos_, May 21 2009
%o (PARI) vector(50, n, n--; binomial(50,n)) \\ _G. C. Greubel_, Nov 13 2018
%o (Magma) [Binomial(50,n): n in [0..50]]; // _G. C. Greubel_, Nov 13 2018
%Y Cf. A010926-A011001, A017765-A017816.
%K nonn,fini,full,easy
%O 0,2
%A _N. J. A. Sloane_