login
Binomial coefficients C(n,79).
2

%I #22 Sep 08 2022 08:44:43

%S 1,80,3240,88560,1837620,30872016,437353560,5373200880,58433559570,

%T 571350360240,5085018206136,41604694413840,315502265971620,

%U 2232785266876080,14832073558533960,92947660966812816

%N Binomial coefficients C(n,79).

%H Michael De Vlieger, <a href="/A017743/b017743.txt">Table of n, a(n) for n = 79..10000</a>

%F From _G. C. Greubel_, Nov 09 2018: (Start)

%F G.f.: x^79/(1-x)^80.

%F E.g.f.: x^79*exp(x)/79!. (End)

%F From _Amiram Eldar_, Dec 18 2020: (Start)

%F Sum_{n>=79} 1/a(n) = 79/78.

%F Sum_{n>=79} (-1)^(n+1)/a(n) = A001787(79)*log(2) - A242091(79)/78! = 23876284937388926200446976*log(2) - 212331179513271534870341816521451408250369273338509183843 / 12829849388763442607445716893050 = 0.9877978641... (End)

%t Array[Binomial[#, 79] &, 16, 79] (* _Michael De Vlieger_, Jul 06 2018 *)

%o (Sage) [binomial(n, 79) for n in range(79,95)] # _Zerinvary Lajos_, May 23 2009

%o (PARI) for(n=79, 100, print1(binomial(n,79), ", ")) \\ _G. C. Greubel_, Nov 09 2018

%o (Magma) [Binomial(n,79): n in [79..100]]; // _G. C. Greubel_, Nov 09 2018

%Y Cf. A001787, A242091.

%K nonn

%O 79,2

%A _N. J. A. Sloane_