login
A017517
a(n) = (11*n + 10)^9.
12
1000000000, 794280046581, 35184372088832, 502592611936843, 3904305912313344, 20711912837890625, 84590643846578176, 285544154243029527, 833747762130149888, 2171893279442309389, 5159780352000000000
OFFSET
0,1
LINKS
Index entries for linear recurrences with constant coefficients, signature (10,-45,120,-210,252,-210,120,-45,10,-1).
FORMULA
From G. C. Greubel, Oct 29 2019: (Start)
G.f.: (1000000000 + 784280046581*x + 27286571623022*x^2 + 186371493144668* x^3 + 366572931352634*x^4 + 229943411037290*x^5 + 42937656267554*x^6 + 1749554857988*x^7 + 5159780342*x^8 + x^9)/(1-x)^10.
E.g.f.: (1000000000 + 793280046581*x + 16798405997835*x^2 + 66570222635015* x^3 + 87577732371360*x^4 + 48903633958641*x^5 + 12992922453126*x^6 + 1699710028962*x^7 + 104178416166*x^8 + 2357947691*x^9)*exp(x). (End)
MAPLE
seq((11*n+10)^9, n=0..20); # G. C. Greubel, Oct 29 2019
MATHEMATICA
(11*Range[20] -1)^9 (* G. C. Greubel, Oct 29 2019 *)
LinearRecurrence[{10, -45, 120, -210, 252, -210, 120, -45, 10, -1}, {1000000000, 794280046581, 35184372088832, 502592611936843, 3904305912313344, 20711912837890625, 84590643846578176, 285544154243029527, 833747762130149888, 2171893279442309389}, 20] (* Harvey P. Dale, Apr 02 2024 *)
PROG
(Maxima) makelist((11*n+10)^9, n, 0, 30); /* Martin Ettl, Oct 21 2012 */
(PARI) vector(21, n, (11*n-1)^9) \\ G. C. Greubel, Oct 29 2019
(Magma) [(11*n+10)^9: n in [0..20]]; // G. C. Greubel, Oct 29 2019
(Sage) [(11*n+10)^9 for n in (0..20)] # G. C. Greubel, Oct 29 2019
(GAP) List([0..20], n-> (11*n+10)^9); # G. C. Greubel, Oct 29 2019
CROSSREFS
Powers of the form (11*n+10)^m: A017509 (m=1), A017510 (m=2), A017511 (m=3), A017512 (m=4), A017513 (m=5), A017514 (m=6), A017515 (m=7), A017516 (m=8), this sequence (m=9), A017518 (m=10), A017519 (m=11), A017520 (m=12).
Sequence in context: A250864 A017181 A017277 * A204593 A017649 A117979
KEYWORD
nonn,easy
STATUS
approved