Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #38 Aug 22 2022 09:12:49
%S 9,20,31,42,53,64,75,86,97,108,119,130,141,152,163,174,185,196,207,
%T 218,229,240,251,262,273,284,295,306,317,328,339,350,361,372,383,394,
%U 405,416,427,438,449,460,471,482,493,504,515,526,537,548,559,570,581,592
%N a(n) = 11*n + 9.
%H Vincenzo Librandi, <a href="/A017497/b017497.txt">Table of n, a(n) for n = 0..10000</a>
%H Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a>
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (2,-1).
%F From _G. C. Greubel_, Oct 28 2019: (Start)
%F G.f.: (9+2*x)/(1-x)^2.
%F E.g.f.: (9+11*x)*exp(x). (End)
%p seq(11*n+9, n=0..60); # _G. C. Greubel_, Oct 28 2019
%t Range[9, 1000, 11] (* _Vladimir Joseph Stephan Orlovsky_, May 29 2011 *)
%t (11*Range[60] - 2) (* _G. C. Greubel_, Oct 28 2019 *)
%o (Magma) [11*n+9: n in [0..60]]; // _Vincenzo Librandi_, Sep 18 2011
%o (PARI) a(n)=11*n+9 \\ _Charles R Greathouse IV_, Jul 10 2016
%o (Sage) [11*n+9 for n in (0..60)] # _G. C. Greubel_, Oct 28 2019
%o (GAP) List([0..60], n-> 11*n+9); # _G. C. Greubel_, Oct 28 2019
%Y Cf. A008593, A017401, A017413.
%Y Powers of the form (11*n+9)^m: this sequence (m=1), A017498 (m=2), A017499 (m=3), A017500 (m=4), A017501 (m=5), A017502 (m=6), A017503 (m=7), A017504 (m=8), A017505 (m=9), A017506 (m=10), A017607 (m=11), A017508 (m=12).
%K nonn,easy
%O 0,1
%A _N. J. A. Sloane_