Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #20 Sep 08 2022 08:44:42
%S 7776,1419857,17210368,90224199,312500000,844596301,1934917632,
%T 3939040643,7339040224,12762815625,21003416576,33038369407,
%U 50049003168,73439775749,104857600000,146211169851,199690286432,267785184193,353305857024,459401384375,589579257376
%N a(n) = (11*n + 6)^5.
%H Vincenzo Librandi, <a href="/A017465/b017465.txt">Table of n, a(n) for n = 0..10000</a>
%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (6,-15,20,-15,6,-1).
%F G.f.: (7776 +1373201*x +8807866*x^2 +8104326*x^3 +1029826*x^4 +3125*x^5 )/(1-x)^6. - _Colin Barker_, Sep 17 2012
%F E.g.f.: (7776 +1412081*x +7189215*x^2 +7140815*x^3 +2049740*x^4 + 161051*x^5)*exp(x). - _G. C. Greubel_, Sep 19 2019
%p seq((11*n+6)^5, n=0..30); # _G. C. Greubel_, Sep 19 2019
%t (11*Range[30] -5)^5 (* _G. C. Greubel_, Sep 19 2019 *)
%o (Magma) [(11*n+6)^5: n in [0..30]]; // _Vincenzo Librandi_, Sep 03 2011
%o (PARI) vector(30, n, (11*n-5)^5) \\ _G. C. Greubel_, Sep 19 2019
%o (Sage) [(11*n+6)^5 for n in (0..30)] # _G. C. Greubel_, Sep 19 2019
%o (GAP) List([0..30], n-> (11*n+6)^5); # _G. C. Greubel_, Sep 19 2019
%Y Powers of the form (11*n+6)^m: A017461 (m=1), A017462 (m=2), A017463 (m=3), A017464 (m=4), this sequence (m=5), A017466 (m=6), A017467 (m=7), A017468 (m=8), A017469 (m=9), A017470 (m=10), A017471 (m=11), A017472 (m=12).
%K nonn,easy
%O 0,1
%A _N. J. A. Sloane_