login
a(n) = 11*n + 5.
17

%I #30 Sep 08 2022 08:44:42

%S 5,16,27,38,49,60,71,82,93,104,115,126,137,148,159,170,181,192,203,

%T 214,225,236,247,258,269,280,291,302,313,324,335,346,357,368,379,390,

%U 401,412,423,434,445,456,467,478,489,500,511,522,533,544,555,566,577,588

%N a(n) = 11*n + 5.

%H Vincenzo Librandi, <a href="/A017449/b017449.txt">Table of n, a(n) for n = 0..10000</a>

%H Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a>

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (2,-1).

%F From _G. C. Greubel_, Sep 18 2019: (Start)

%F a(n) = 2*a(n-1) - a(n-2).

%F G.f.: (5 + 6*x)/(1-x)^2.

%F E.g.f.: (5 + 11*x)*exp(x). (End)

%p seq(11*n+5, n=0..60); # _G. C. Greubel_, Sep 18 2019

%t Range[5, 1000, 11] (* _Vladimir Joseph Stephan Orlovsky_, May 28 2011 *)

%t LinearRecurrence[{2,-1},{5,16},60] (* _Harvey P. Dale_, Apr 15 2019 *)

%o (Magma) [11*n+5: n in [0..60]]; // _Vincenzo Librandi_, Sep 03 2011

%o (PARI) a(n)=11*n+5 \\ _Charles R Greathouse IV_, Jul 10 2016

%o (Sage) [11*n+5 for n in (0..60)] # _G. C. Greubel_, Sep 18 2019

%o (GAP) List([0..60], n-> 11*n+5); # _G. C. Greubel_, Sep 18 2019

%Y Cf. A008593, A017401, A017437.

%Y Powers of the form (11*n+5)^m: this sequence (m=1), A017450 (m=2), A017451 (m=3), A017452 (m=4), A017453 (m=5), A017454 (m=6), A017455 (m=7), A017456 (m=8), A017457 (m=9), A017458 (m=10), A017459 (m=11), A017460 (m=12).

%K nonn,easy

%O 0,1

%A _N. J. A. Sloane_