login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

a(n) = (10*n + 5)^8.
1

%I #22 Apr 18 2023 05:02:37

%S 390625,2562890625,152587890625,2251875390625,16815125390625,

%T 83733937890625,318644812890625,1001129150390625,2724905250390625,

%U 6634204312890625,14774554437890625,30590228625390625,59604644775390625,110324037687890625,195408755062890625,333160561500390625

%N a(n) = (10*n + 5)^8.

%H Vincenzo Librandi, <a href="/A017336/b017336.txt">Table of n, a(n) for n = 0..10000</a>

%H <a href="/index/Rec#order_09">Index entries for linear recurrences with constant coefficients</a>, signature (9,-36,84,-126,126,-84,36,-9,1).

%F G.f.: -((390625*(x^8 + 6552*x^7 + 331612*x^6 + 2485288*x^5 + 4675014*x^4 + 2485288*x^3 + 331612*x^2 + 6552*x + 1))/(x-1)^9). - _Harvey P. Dale_, Nov 02 2011

%F From _Amiram Eldar_, Apr 18 2023: (Start)

%F a(n) = A017329(n)^8.

%F a(n) = 5^8 * A016760(n).

%F Sum_{n>=0} 1/a(n) = 17*Pi^8/63000000000. (End)

%t (10Range[0,20]+5)^8 (* _Harvey P. Dale_, Nov 02 2011 *)

%o (Magma) [(10*n+5)^8: n in [0..20]]; // _Vincenzo Librandi_, Aug 02 2011

%Y Cf. A016760, A017329.

%K nonn,easy

%O 0,1

%A _N. J. A. Sloane_