Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #24 Aug 20 2024 13:20:59
%S 625,50625,390625,1500625,4100625,9150625,17850625,31640625,52200625,
%T 81450625,121550625,174900625,244140625,332150625,442050625,577200625,
%U 741200625,937890625,1171350625,1445900625,1766100625,2136750625,2562890625,3049800625,3603000625
%N a(n) = (10*n + 5)^4.
%H Vincenzo Librandi, <a href="/A017332/b017332.txt">Table of n, a(n) for n = 0..10000</a>
%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (5,-10,10,-5,1).
%F G.f.: -625*(x^4 + 76*x^3 + 230*x^2 + 76*x+1)/(x-1)^5. - _Colin Barker_, Nov 14 2012
%F From _Amiram Eldar_, Apr 18 2023: (Start)
%F a(n) = A017329(n)^4.
%F a(n) = 5^4 * A016756(n).
%F Sum_{n>=0} 1/a(n) = Pi^4/60000. (End)
%t Table[(10*n + 5)^4, {n, 0, 30}] (* _Amiram Eldar_, Apr 18 2023 *)
%t LinearRecurrence[{5,-10,10,-5,1},{625,50625,390625,1500625,4100625},30] (* _Harvey P. Dale_, Aug 20 2024 *)
%o (Magma) [(10*n+5)^4: n in [0..35]]; // _Vincenzo Librandi_, Aug 02 2011
%Y Cf. A016756, A017329.
%K nonn,easy
%O 0,1
%A _N. J. A. Sloane_