Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #26 Sep 08 2022 08:44:42
%S 4,14,24,34,44,54,64,74,84,94,104,114,124,134,144,154,164,174,184,194,
%T 204,214,224,234,244,254,264,274,284,294,304,314,324,334,344,354,364,
%U 374,384,394,404,414,424,434,444,454,464,474,484,494,504,514,524,534
%N a(n) = 10n + 4.
%C Apart from initial term(s), dimension of the space of weight 2n cusp forms for Gamma_0( 59 ).
%H Vincenzo Librandi, <a href="/A017317/b017317.txt">Table of n, a(n) for n = 0..5000</a>
%H Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a>
%H William A. Stein, <a href="http://wstein.org/Tables/dimskg0n.gp">Dimensions of the spaces S_k(Gamma_0(N))</a>
%H William A. Stein, <a href="http://wstein.org/Tables/">The modular forms database</a>
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (2,-1).
%F a(n) = 10*n + 4; a(n) = 2*a(n-1) - a(n-2). - _Vincenzo Librandi_, May 29 2011
%F G.f.: 2*(2+3*x)/(x-1)^2 . - _R. J. Mathar_, Mar 20 2018
%t Range[4, 1000, 10] (* _Vladimir Joseph Stephan Orlovsky_, May 28 2011 *)
%o (Magma) [10*n+4: n in [0..60]]; // _Vincenzo Librandi_, May 29 2011
%o (PARI) a(n)=10*n+4 \\ _Charles R Greathouse IV_, Jul 10 2016
%Y Cf. A008592, A017305.
%K nonn,easy
%O 0,1
%A _N. J. A. Sloane_