login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 7*n + 3.
23

%I #29 Oct 17 2023 05:06:30

%S 3,10,17,24,31,38,45,52,59,66,73,80,87,94,101,108,115,122,129,136,143,

%T 150,157,164,171,178,185,192,199,206,213,220,227,234,241,248,255,262,

%U 269,276,283,290,297,304,311,318,325,332,339,346,353,360,367,374,381

%N a(n) = 7*n + 3.

%H Vincenzo Librandi, <a href="/A017017/b017017.txt">Table of n, a(n) for n = 0..5000</a>

%H Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a>

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (2,-1).

%F From _G. C. Greubel_, Oct 17 2023: (Start)

%F G.f.: (3 + 4*x)/(1 - x)^2.

%F E.g.f.: (3 + 7*x)*exp(x). (End)

%p A017017:=n->7*n + 3; seq(A017017(n), n=0..100); # _Wesley Ivan Hurt_, Feb 24 2014

%t Range[3, 600, 7] (* _Vladimir Joseph Stephan Orlovsky_, May 27 2011 *)

%o (Magma) [7*n+3: n in [0..60]]; // _Vincenzo Librandi_, May 28 2011

%o (PARI) a(n)=7*n+3 \\ _Charles R Greathouse IV_, Jul 02 2013

%o (SageMath) [7*n+3 for n in range(80)] # _G. C. Greubel_, Oct 17 2023

%Y Cf. A008589, A016993, A017005.

%K nonn,easy

%O 0,1

%A _N. J. A. Sloane_