login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

a(n) = (6*n + 4)^12.
1

%I #17 Apr 01 2022 09:10:41

%S 16777216,1000000000000,281474976710656,12855002631049216,

%T 232218265089212416,2386420683693101056,16777216000000000000,

%U 89762301673555234816,390877006486250192896,1449225352009601191936,4722366482869645213696,13841287201000000000000,37133262473195501387776

%N a(n) = (6*n + 4)^12.

%H Vincenzo Librandi, <a href="/A016968/b016968.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_13">Index entries for linear recurrences with constant coefficients</a>, signature (13,-78,286,-715,1287,-1716,1716,-1287,715,-286,78,-13,1).

%F From _Amiram Eldar_, Apr 01 2022: (Start)

%F a(n) = A016957(n)^12 = A016958(n)^6 = A016959(n)^4 = A016960(n)^3 = A016962(n)^2.

%F a(n) = 2^12*A016800(n).

%F Sum_{n>=0} 1/a(n) = PolyGamma(11, 2/3)/86890185149644800. (End)

%t (6Range[0,20]+4)^12 (* _Harvey P. Dale_, Apr 17 2011 *)

%o (Magma) [(6*n+4)^12: n in [0..20]]; // _Vincenzo Librandi_, May 07 2011

%Y Cf. A016800, A016957, A016958, A016959, A016960, A016961, A016962, A016963, A016964, A016965, A016966, A016967.

%Y Subsequence of A008456.

%K nonn,easy

%O 0,1

%A _N. J. A. Sloane_