login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = (6*n + 3)^9.
4

%I #21 Mar 30 2022 06:34:41

%S 19683,387420489,38443359375,794280046581,7625597484987,

%T 46411484401953,208728361158759,756680642578125,2334165173090451,

%U 6351461955384057,15633814156853823,35452087835576229,75084686279296875,150094635296999121,285544154243029527,520411082988487293

%N a(n) = (6*n + 3)^9.

%H Vincenzo Librandi, <a href="/A016953/b016953.txt">Table of n, a(n) for n = 0..2000</a>

%H <a href="/index/Rec#order_10">Index entries for linear recurrences with constant coefficients</a>, signature (10,-45,120,-210,252,-210,120,-45,10,-1).

%F a(n) = 10*a(n-1) - 45*a(n-2) + 120*a(n-3) - 210*a(n-4) + 252*a(n-5) - 210*a(n-6) + 120*a(n-7) - 45*a(n-8) + 10*a(n-9) - a(n-10). - _Harvey P. Dale_, Jan 19 2012

%F From _Amiram Eldar_, Mar 30 2022: (Start)

%F a(n) = A016945(n)^9 = A016947(n)^3.

%F a(n) = 3^9*A016761(n).

%F Sum_{n>=0} 1/a(n) = 511*zeta(9)/10077696.

%F Sum_{n>=0} (-1)^n/a(n) = 277*Pi^9/162533081088. (End)

%t (6*Range[0,20]+3)^9 (* _Harvey P. Dale_, Jan 19 2012 *)

%o (Magma) [(6*n+3)^9: n in [0..20]]; // _Vincenzo Librandi_, May 06 2011

%Y Cf. A016761, A016945, A016946, A016947, A016948, A016949, A016950, A016951, A016952.

%Y Subsequence of A001017.

%K nonn,easy

%O 0,1

%A _N. J. A. Sloane_