login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A016923
a(n) = (6*n + 1)^3.
18
1, 343, 2197, 6859, 15625, 29791, 50653, 79507, 117649, 166375, 226981, 300763, 389017, 493039, 614125, 753571, 912673, 1092727, 1295029, 1520875, 1771561, 2048383, 2352637, 2685619, 3048625, 3442951, 3869893, 4330747, 4826809, 5359375, 5929741, 6539203, 7189057
OFFSET
0,2
REFERENCES
S. R. Finch, Mathematical Constants, Cambridge, 2003, Section 1.6.3.
FORMULA
Sum_{n>=0} 1/a(n) = Pi^3/(36*sqrt(3)) + 91*zeta(3)/216.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Wesley Ivan Hurt, Dec 28 2023
From Stefano Spezia, Nov 01 2024: (Start)
E.g.f.: exp(x)*(1 + 342*x + 756*x^2 + 216*x^3).
a(n) = A000578(A016921(n)). (End)
MATHEMATICA
a[n_]:=(6*n + 1)^3; Array[a, 60, 0] (* or *)
LinearRecurrence[{4, -6, 4, -1}, {1, 343, 2197, 6859}, 60] (* or *)
CoefficientList[Series[(1 + 339 x + 831 x^2 + 125 x^3)/(-1 + x)^4, {x, 0, 60}], x] (* Stefano Spezia, Sep 03 2018 *)
PROG
(Magma) [(6*n+1)^3: n in [0..60]]; // Vincenzo Librandi, May 04 2011
CROSSREFS
Sequence in context: A167733 A167730 A250138 * A016983 A267321 A134738
KEYWORD
nonn,easy
STATUS
approved