login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

a(n) = (3n+2)^7.
7

%I #21 Dec 04 2019 13:40:40

%S 128,78125,2097152,19487171,105413504,410338673,1280000000,3404825447,

%T 8031810176,17249876309,34359738368,64339296875,114415582592,

%U 194754273881,319277809664,506623120463,781250000000

%N a(n) = (3n+2)^7.

%C The inverse binomial transform is 128, 77997, 1941030, 13429962, 39735360, 57561840, 40415760, 11022480, 0 (0 from here on). - _R. J. Mathar_, May 07 2008

%H <a href="/index/Rec#order_08">Index entries for linear recurrences with constant coefficients</a>, signature (8, -28, 56, -70, 56, -28, 8, -1).

%F G.f.: (128+77101*x+1475736*x^2+4890287*x^3+3870352*x^4+692499*x^5 +16376*x^6 +x^7) / (x-1)^8. - _R. J. Mathar_, May 07 2008

%F Sum_{n>=0} 1/a(n) = (147555*zeta(7) - 28*sqrt(3)*Pi^7)/295245. - _Ilya Gutkovskiy_, Jun 16 2016

%t Table[(3n+2)^7,{n,0,100}] (* _Mohammad K. Azarian_, Jun 15 2016 *)

%t LinearRecurrence[{8,-28,56,-70,56,-28,8,-1},{128,78125,2097152,19487171,105413504,410338673,1280000000,3404825447},30] (* _Harvey P. Dale_, Dec 04 2019 *)

%K nonn,easy

%O 0,1

%A _N. J. A. Sloane_.