login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = (3*n + 2)^5.
8

%I #20 May 10 2024 01:53:20

%S 32,3125,32768,161051,537824,1419857,3200000,6436343,11881376,

%T 20511149,33554432,52521875,79235168,115856201,164916224,229345007,

%U 312500000,418195493,550731776,714924299,916132832,1160290625,1453933568,1804229351,2219006624,2706784157,3276800000

%N a(n) = (3*n + 2)^5.

%H Vincenzo Librandi, <a href="/A016793/b016793.txt">Table of n, a(n) for n = 0..10000</a>

%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (6,-15,20,-15,6,-1).

%F From _Ilya Gutkovskiy_, Jun 16 2016: (Start)

%F G.f.: (32 + 2933*x + 14498*x^2 + 10678*x^3 + 1018*x^4 + x^5)/(1 - x)^6.

%F a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6). (End)

%F From _Amiram Eldar_, Mar 31 2022: (Start)

%F a(n) = A016789(n)^5.

%F Sum_{n>=0} 1/a(n) = 121*zeta(5)/243 - 2*Pi^5/(729*sqrt(3)). (End)

%t Table[(3n+2)^5,{n,0,100}] (* _Mohammad K. Azarian_, Jun 15 2016 *)

%t LinearRecurrence[{6,-15,20,-15,6,-1},{32,3125,32768,161051,537824,1419857},30] (* _Harvey P. Dale_, May 10 2024 *)

%o (Magma) [(3*n+2)^5 : n in [0..30]]; // _Vincenzo Librandi_, Sep 29 2011

%Y Cf. A016789, A016790, A016791, A016792.

%Y Subsequence of A000584.

%K nonn,easy

%O 0,1

%A _N. J. A. Sloane_