login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = (2*n+1)^6.
7

%I #31 Sep 08 2022 08:44:41

%S 1,729,15625,117649,531441,1771561,4826809,11390625,24137569,47045881,

%T 85766121,148035889,244140625,387420489,594823321,887503681,

%U 1291467969,1838265625,2565726409,3518743761,4750104241,6321363049,8303765625,10779215329,13841287201,17596287801

%N a(n) = (2*n+1)^6.

%H Vincenzo Librandi, <a href="/A016758/b016758.txt">Table of n, a(n) for n = 0..10000</a>

%H <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (7,-21,35,-35,21,-7,1).

%F a(0)=1, a(1)=729, a(2)=15625, a(3)=117649, a(4)=531441, a(5)=1771561, a(6)=4826809, a(n) = 7*a(n-1) -21*a(n-2) +35*a(n-3) -35*a(n-4) + 21*a(n-5) -7*a(n-6) +a(n-7). - _Harvey P. Dale_, Dec 26 2012

%F G.f.: (1 +722*x +10543*x^2 +23548*x^3 +10543*x^4 +722*x^5 +x^6)/(1-x)^7 . - _R. J. Mathar_, Jul 07 2017

%F Sum_{n>=0} 1/a(n) = Pi^6/960 (A300709). - _Amiram Eldar_, Oct 10 2020

%F From _Amiram Eldar_, Jan 28 2021: (Start)

%F Product_{n>=0} (1 + 1/a(n)) = cosh(Pi/2)*(cos(sqrt(3)*Pi/2) + cosh(Pi/2))/2.

%F Product_{n>=1} (1 - 1/a(n)) = Pi*cosh(sqrt(3)*Pi/2)/24. (End)

%t (2*Range[0,20]+1)^6 (* or *) LinearRecurrence[{7,-21,35,-35,21,-7,1},{1, 729,15625,117649,531441,1771561,4826809},20] (* _Harvey P. Dale_, Dec 26 2012 *)

%o (Magma) [(2*n+1)^6: n in [0..30]]; // _Vincenzo Librandi_, Sep 07 2011

%o (PARI) vector(30, n, n--; (2*n+1)^6) \\ _G. C. Greubel_, Sep 15 2018

%Y Cf. A300709.

%K nonn,easy

%O 0,2

%A _N. J. A. Sloane_