Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #14 Dec 24 2015 23:26:06
%S 1,1,1,60,1,4,2,1,2,1,3,3,2,1,4,2,3,1,2,8,2,2,4,1,1,1,1,3,10,10,2,1,
%T 354,1,12,521,1,1,1,3,1,1,16,1,21,10,5,1,2,2,3,2,1,9,9,1,9,1,12,1,10,
%U 1,1,4,1,62,2,1,1,1,5,8,10,2,2,1,1,7,5,1,1,1,1,22,2,14,28,1,284,1,49,1,41,1,4
%N Continued fraction for log(9/2).
%H Harry J. Smith, <a href="/A016532/b016532.txt">Table of n, a(n) for n = 1..20000</a>
%H G. Xiao, <a href="http://wims.unice.fr/~wims/en_tool~number~contfrac.en.html">Contfrac</a>
%e 1.50407739677627407337325835... = 1 + 1/(1 + 1/(1 + 1/(60 + 1/(1 + ...)))). - _Harry J. Smith_, May 26 2009
%t ContinuedFraction[Log[9/2], 100] (* _Stefan Steinerberger_, Mar 24 2006 *)
%o (PARI) { allocatemem(932245000); default(realprecision, 21000); x=contfrac(log(9/2)); for (n=1, 20000, write("b016532.txt", n, " ", x[n])); } \\ _Harry J. Smith_, May 26 2009
%Y Cf. A016581 Decimal expansion. - _Harry J. Smith_, May 26 2009
%K nonn,cofr
%O 1,4
%A _N. J. A. Sloane_
%E More terms from _Stefan Steinerberger_, Mar 24 2006