login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of 1/((1-2x)(1-5x)(1-7x)).
2

%I #27 Aug 11 2021 12:07:37

%S 1,14,137,1162,9165,69342,511393,3709874,26619989,189594790,

%T 1343438889,9485451066,66805055773,469669890158,3297861746225,

%U 23135894831938,162205576930917,1136710604184246,7963332057891001

%N Expansion of 1/((1-2x)(1-5x)(1-7x)).

%H Michael De Vlieger, <a href="/A016296/b016296.txt">Table of n, a(n) for n = 0..1182</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (14,-59,70).

%F a(n-2) = ((7^n - 2^n)/5 - (5^n - 2^n)/3)/2. - _Zerinvary Lajos_, Jun 05 2009

%F a(n) = 14*a(n-1) - 59*a(n-2) + 70*a(n-3), n >= 3. - _Vincenzo Librandi_, Mar 16 2011

%F a(n) = 12*a(n-1) - 35*a(n-2) + 2^n, n >= 2. - _Vincenzo Librandi_, Mar 16 2011

%t CoefficientList[Series[1/((1 - 2 x) (1 - 5 x) (1 - 7 x)), {x, 0, 18}], x] (* _Michael De Vlieger_, Jan 31 2018 *)

%t LinearRecurrence[{14,-59,70},{1,14,137},30] (* _Harvey P. Dale_, Aug 11 2021 *)

%o (Sage) [((7^n - 2^n)/5-(5^n - 2^n)/3)/2 for n in range(2,21)] # _Zerinvary Lajos_, Jun 05 2009

%K nonn,easy

%O 0,2

%A _N. J. A. Sloane_