Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #49 Sep 08 2022 08:44:40
%S 4,5,6,7,8,9,10,11,12,15,20,21,22,26,30,38,88,100,109,173,200,212,235,
%T 264,300,1000,2000,3000,3114,10000,20000,30000,81619,100000,200000,
%U 300000,1000000,2000000,3000000,10000000,20000000
%N Numbers k such that k^2 contains exactly 2 distinct digits.
%C 10^k, 2*10^k, 3*10^k for k > 0 are terms. - _Chai Wah Wu_, Dec 17 2021
%C Subsequence of primes is A057659. - _Bernard Schott_, Jul 29 2022
%D R. K. Guy, Unsolved Problems in Number Theory, F24.
%H Robert G. Wilson v, <a href="/A016069/b016069.txt">Table of n, a(n) for n = 1..81</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/SquareNumber.html">Square Number</a>
%F a(n) = ((n-1) mod 3 + 1)*10^(ceiling(n/3)-7) for n >= 34 (conjectured). - _Chai Wah Wu_, Dec 17 2021
%e 26 is in the sequence because 26^2 = 676 contains exactly 2 distinct digits.
%t Join[Select[Range[90000],Count[DigitCount[#^2],_?(#!=0&)]==2&],Flatten[ NestList[ 10#&,{100000,200000,300000},5]]] (* _Harvey P. Dale_, Mar 09 2013 *)
%t Select[Range[20000000], Length[Union[IntegerDigits[#^2]]]==2&] (* _Vincenzo Librandi_, Nov 04 2014 *)
%o (Haskell)
%o import Data.List (nub)
%o a016069 n = a016069_list !! (n-1)
%o a016069_list = filter ((== 2) . length . nub . show . (^ 2)) [0..]
%o -- _Reinhard Zumkeller_, Apr 14 2011
%o (PARI) /* needs version >= 2.6 */
%o for (n=1, 10^9, if ( #Set(digits(n^2))==2, print1(n,", ") ) );
%o /* _Joerg Arndt_, Mar 09 2013 */
%o (Python)
%o from gmpy2 import is_square, isqrt
%o from itertools import combinations, product
%o A016069_list = []
%o for g in range(2,10):
%o n = 2**g-1
%o for x in combinations('0123456789',2):
%o for i,y in enumerate(product(x,repeat=g)):
%o if i > 0 and i < n and y[0] != '0':
%o z = int(''.join(y))
%o if is_square(z):
%o A016069_list.append(int(isqrt(z)))
%o A016069_list = sorted(A016069_list) # _Chai Wah Wu_, Nov 03 2014
%o (Magma) [n: n in [0..20000000] | #Set(Intseq(n^2)) eq 2]; // _Vincenzo Librandi_, Nov 04 2014
%Y Cf. A016070, A018884, A018885, A057659.
%K nonn,base,nice
%O 1,1
%A _Robert G. Wilson v_