login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

(tau(n^4) + 3)/4, where tau = A000005.
14

%I #17 Jan 17 2017 12:32:21

%S 1,2,2,3,2,7,2,4,3,7,2,12,2,7,7,5,2,12,2,12,7,7,2,17,3,7,4,12,2,32,2,

%T 6,7,7,7,21,2,7,7,17,2,32,2,12,12,7,2,22,3,12,7,12,2,17,7,17,7,7,2,57,

%U 2,7,12,7,7,32,2,12,7,32,2,30,2,7,12,12,7,32,2,22,5,7,2,57,7,7

%N (tau(n^4) + 3)/4, where tau = A000005.

%C If n is prime, a(n) = 2 since a(p) = (tau(p^4)+3)/4 = (5+3)/4 = 2. - _Wesley Ivan Hurt_, Nov 16 2013

%H Antti Karttunen, <a href="/A015996/b015996.txt">Table of n, a(n) for n = 1..10000</a>

%F a(n) = (A000005(n^4) + 3)/4.

%p A015996 := proc(n)

%p (numtheory[tau](n^4)+3)/4 ;

%p end proc; # _R. J. Mathar_, May 09 2013

%t Table[(DivisorSigma[0, n^4] + 3)/4, {n, 100}] (* _Wesley Ivan Hurt_, Nov 16 2013 *)

%o (PARI)

%o A015996(n) = (numdiv(n^4)+3)/4;

%o for(n=1, 10000, write("b015996.txt", n, " ", A015996(n)));

%o \\ _Antti Karttunen_, Jan 17 2017

%Y Cf. A000005, A018892, A015995, A015999, A016001, A016002, A016003, A016005, A016006, A016007, A016008, A016009, A016012, A016020.

%K nonn

%O 1,2

%A _Robert G. Wilson v_

%E Definition corrected by Vladeta Jovovic, Sep 03 2005