The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A015739 Number of 4's in all the partitions of n into distinct parts. 3
0, 0, 0, 1, 1, 1, 2, 1, 2, 3, 3, 5, 6, 7, 9, 10, 12, 15, 18, 22, 26, 31, 36, 42, 50, 58, 68, 80, 92, 107, 124, 142, 164, 189, 216, 248, 284, 323, 369, 420, 476, 541, 613, 693, 784, 885, 997, 1123, 1264, 1419, 1593, 1787, 2000, 2239, 2504, 2795, 3120, 3479 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,7
LINKS
FORMULA
G.f.: x^4*prod(j>=1, 1+x^j)/(1+x^4). - Emeric Deutsch, Apr 17 2006
Corresponding g.f. for "number of k's" is x^k/(1+x^k)*prod(n>=1, 1+x^n ). [Joerg Arndt, Feb 20 2014]
EXAMPLE
a(9) = 2 because in the 8 (=A000009(9)) partitions of 9 into distinct parts, namely [9], [8,1], [7,2], [6,3], [6,2,1], [5,4], [5,3,1] and [4,3,2] we have altogether two parts equal to 4.
MAPLE
g:=x^4*product(1+x^j, j=1..60)/(1+x^4): gser:=series(g, x=0, 57): seq(coeff(gser, x, n), n=1..54);
# Emeric Deutsch, Apr 17 2006
b:= proc(n, i) option remember; local g;
if n=0 then [1, 0]
elif i<1 then [0, 0]
else g:= `if`(i>n, [0$2], b(n-i, i-1));
b(n, i-1) +g +[0, `if`(i=4, g[1], 0)]
fi
end:
a:= n-> b(n, n)[2]:
seq (a(n), n=1..100);
# Alois P. Heinz, Oct 27 2012
MATHEMATICA
$RecursionLimit = 1000; b[n_, i_] := b[n, i] = Module[{g}, If[n==0, {1, 0}, If[i<1 , {0, 0}, g = If[i>n, {0, 0}, b[n-i, i-1]]; b[n, i-1] + g + {0, If[i == 4, g[[1]], 0]}]]]; a[n_] := b[n, n][[2]]; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Apr 01 2015, after Alois P. Heinz *)
Table[Count[Flatten@Select[IntegerPartitions[n], DeleteDuplicates[#] == # &], 4], {n, 58}] (* Robert Price, May 16 2020 *)
CROSSREFS
Sequence in context: A180235 A239493 A331849 * A015746 A109266 A022876
KEYWORD
nonn
AUTHOR
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 17 00:51 EDT 2024. Contains 373432 sequences. (Running on oeis4.)