login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of parts in all partitions of n into distinct parts.
77

%I #80 May 21 2021 04:17:15

%S 1,1,3,3,5,8,10,13,18,25,30,40,49,63,80,98,119,149,179,218,266,318,

%T 380,455,541,640,760,895,1050,1234,1442,1679,1960,2272,2635,3052,3520,

%U 4054,4669,5359,6142,7035,8037,9170,10460,11896,13517,15349,17394,19691

%N Number of parts in all partitions of n into distinct parts.

%H Alois P. Heinz, <a href="/A015723/b015723.txt">Table of n, a(n) for n = 1..10000</a> (first 1000 terms from T. D. Noe)

%H Martin Klazar, <a href="http://arxiv.org/abs/1808.08449">What is an answer? — remarks, results and problems on PIO formulas in combinatorial enumeration, part I</a>, arXiv:1808.08449 [math.CO], 2018.

%H Arnold Knopfmacher, and Neville Robbins, <a href="http://www.plouffe.fr/OEIS/citations/robbinspart.pdf">Identities for the total number of parts in partitions of integers</a>, Util. Math. 67 (2005), 9-18.

%H Mircea Merca, <a href="http://dx.doi.org/10.1016/j.jnt.2015.08.014">Combinatorial interpretations of a recent convolution for the number of divisors of a positive integer</a>, Journal of Number Theory, Volume 160, March 2016, Pages 60-75. See s(n).

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/q-PolygammaFunction.html">q-Polygamma Function</a>, <a href="http://mathworld.wolfram.com/q-PochhammerSymbol.html">q-Pochhammer Symbol</a>.

%F G.f.: sum(k>=1, x^k/(1+x^k) ) * prod(m>=1, 1+x^m ). Convolution of A048272 and A000009. - _Vladeta Jovovic_, Nov 26 2002

%F G.f.: sum(k>=1, k*x^(k*(k+1)/2)/prod(i=1..k, 1-x^i ) ). - _Vladeta Jovovic_, Sep 21 2005

%F a(n) = A238131(n)+A238132(n) = sum_{k=1..n} A048272(k)*A000009(n-k). - _Mircea Merca_, Feb 26 2014

%F a(n) = Sum_{k>=1} k*A008289(n,k). - _Vaclav Kotesovec_, Apr 16 2016

%F G.f.: -(-1; x)_inf * (log(1-x) + psi_x(1 - log(-1)/log(x)))/(2*log(x)), where psi_q(z) is the q-digamma function, (a; q)_inf is the q-Pochhammer symbol, log(-1) = i*Pi. - _Vladimir Reshetnikov_, Nov 21 2016

%F a(n) ~ 3^(1/4) * log(2) * exp(Pi*sqrt(n/3)) / (2 * Pi * n^(1/4)). - _Vaclav Kotesovec_, May 19 2018

%F For n > 0, a(n) = A116676(n) + A116680(n). - _Vaclav Kotesovec_, May 26 2018

%e The strict integer partitions of 6 are {(6), (5,1), (4,2), (3,2,1)} with a total of 1 + 2 + 2 + 3 = 8 parts, so a(6) = 8. - _Gus Wiseman_, May 09 2019

%p b:= proc(n, i) option remember; `if`(n=0, [1, 0], `if`(i<1, [0, 0],

%p add((l->[l[1], l[2]+l[1]*j])(b(n-i*j, i-1)), j=0..min(n/i, 1))))

%p end:

%p a:= n-> b(n, n)[2]:

%p seq(a(n), n=1..50); # _Alois P. Heinz_, Feb 27 2013

%t nn=50; Rest[CoefficientList[Series[D[Product[1+y x^i,{i,1,nn}],y]/.y->1,{x,0,nn}],x]] (* _Geoffrey Critzer_, Oct 29 2012; fixed by _Vaclav Kotesovec_, Apr 16 2016 *)

%t q[n_, k_] := q[n, k] = If[n<k || k<1, 0, If[n == 1, 1, q[n-k, k] + q[n-k, k-1]]]; Table[Sum[k*q[n, k], {k, 1, Floor[(Sqrt[8*n+1] - 1)/2]}], {n, 1, 100}] (* _Vaclav Kotesovec_, Apr 16 2016 *)

%t Table[Length[Join@@Select[IntegerPartitions[n],UnsameQ@@#&]],{n,0,30}] - _Gus Wiseman_, May 09 2019

%t b[n_, i_] := b[n, i] = If[n == 0, {1, 0}, If[i<1, {0, 0},

%t Sum[{#[[1]], #[[2]] + #[[1]]*j}&@ b[n-i*j, i-1], {j, 0, Min[n/i, 1]}]]];

%t a[n_] := b[n, n][[2]];

%t Array[a, 50] (* _Jean-François Alcover_, May 21 2021, after _Alois P. Heinz_ *)

%o (PARI) N=66; q='q+O('q^N); gf=sum(n=0,N, n*q^(n*(n+1)/2) / prod(k=1,n, 1-q^k ) );

%o Vec(gf) /* _Joerg Arndt_, Oct 20 2012 */

%Y Cf. A006128, A008289, A079499, A067619, A186545.

%Y Column k=1 of: A210485, A213177, A327622.

%Y Row lengths of A325537.

%Y Cf. A022629, A066186, A066189, A325504, A325505, A325506, A325513, A325515.

%K nonn

%O 1,3

%A _Clark Kimberling_

%E Extended and corrected by _Naohiro Nomoto_, Feb 24 2002