login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of ordered triples of integers from [ 1..n ] with no global factor.
12

%I #63 Sep 08 2022 08:44:40

%S 1,3,8,15,29,42,69,95,134,172,237,287,377,452,552,652,804,915,1104,

%T 1252,1450,1635,1910,2106,2416,2674,3007,3301,3735,4027,4522,4914,

%U 5404,5844,6432,6870,7572,8121,8805,9389,10249,10831,11776,12506

%N Number of ordered triples of integers from [ 1..n ] with no global factor.

%C Number of integer-sided triangles with at least two sides <= n and sides relatively prime. - _Henry Bottomley_, Sep 29 2006

%H R. J. Mathar, <a href="/A015631/b015631.txt">Table of n, a(n) for n = 1..10000</a>

%F a(n) = (A071778(n)+3*A018805(n)+2)/6. - _Vladeta Jovovic_, Dec 01 2004

%F Partial sums of the Moebius transform of the triangular numbers (A007438). - _Steve Butler_, Apr 18 2006

%F a(n) = 2*A123324(n) - A046657(n) for n>1. - _Henry Bottomley_, Sep 29 2006

%F Row sums of triangle A134543. - _Gary W. Adamson_, Oct 31 2007

%F a(n) ~ n^3 / (6*Zeta(3)). - _Vaclav Kotesovec_, Jan 31 2019

%F G.f.: (1/(1 - x)) * Sum_{k>=1} mu(k) * x^k / (1 - x^k)^3. - _Ilya Gutkovskiy_, Feb 14 2020

%F a(n) = n*(n+1)*(n+2)/6 - Sum_{j=2..n} a(floor(n/j)) = A000292(n) - Sum_{j=2..n} a(floor(n/j)). - _Chai Wah Wu_, Mar 30 2021

%e a(4) = 15 because the 15 triples in question are in lexicographic order: [1,1,1], [1,1,2], [1,1,3], [1,1,4], [1,2,2], [1,2,3], [1,2,4], [1,3,3], [1,3,4], [1,4,4], [2,2,3], [2,3,3], [2,3,4], [3,3,4] and [3,4,4]. - _Wolfdieter Lang_, Apr 04 2013

%e The a(4) = 15 triangles with at least two sides <= 4 and sides relatively prime (see _Henry Bottomley_'s comment above) are: [1,1,1], [1,2,2], [2,2,3], [1,3,3], [2,3,3], [2,3,4], [3,3,4], [3,3,5], [1,4,4], [2,4,5], [3,4,4], [3,4,5], [3,4,6], [4,4,5], [4,4,7]. - _Alois P. Heinz_, Feb 14 2020

%p with(numtheory):

%p b:= proc(n) option remember;

%p add(mobius(n/d)*d*(d+1)/2, d=divisors(n))

%p end:

%p a:= proc(n) option remember;

%p b(n) + `if`(n=1, 0, a(n-1))

%p end:

%p seq(a(n), n=1..60); # _Alois P. Heinz_, Feb 09 2011

%t a[1] = 1; a[n_] := a[n] = Sum[MoebiusMu[n/d]*d*(d+1)/2, {d, Divisors[n]}] + a[n-1]; Table[a[n], {n, 1, 60}] (* _Jean-François Alcover_, Jan 20 2014, after Maple *)

%t Accumulate[Table[Sum[MoebiusMu[n/d]*d*(d + 1)/2, {d, Divisors[n]}], {n, 1, 50}]] (* _Vaclav Kotesovec_, Jan 31 2019 *)

%o (Magma) [n eq 1 select 1 else Self(n-1)+ &+[MoebiusMu(n div d) *d*(d+1)/2:d in Divisors(n)]:n in [1..50]]; // _Marius A. Burtea_, Feb 14 2020

%o (Python)

%o from functools import lru_cache

%o @lru_cache(maxsize=None)

%o def A015631(n):

%o if n == 0:

%o return 0

%o c, j = 1, 2

%o k1 = n//j

%o while k1 > 1:

%o j2 = n//k1 + 1

%o c += (j2-j)*A015631(k1)

%o j, k1 = j2, n//j2

%o return n*(n-1)*(n+4)//6-c+j # _Chai Wah Wu_, Mar 30 2021

%o (PARI) a(n) = sum(k=1, n, sumdiv(k, d, moebius(k/d)*binomial(d+1, 2))); \\ _Seiichi Manyama_, Jun 12 2021

%o (PARI) a(n) = binomial(n+2, 3)-sum(k=2, n, a(n\k)); \\ _Seiichi Manyama_, Jun 12 2021

%o (PARI) my(N=66, x='x+O('x^N)); Vec(sum(k=1, N, moebius(k)*x^k/(1-x^k)^3)/(1-x)) \\ _Seiichi Manyama_, Jun 12 2021

%Y Column k=3 of A177976.

%Y Cf. A000292, A002088, A015616, A015634, A015650, A134543.

%K nonn

%O 1,2

%A _Olivier Gérard_