login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 11*a(n-1) + 3*a(n-2).
1

%I #38 Dec 16 2023 17:10:25

%S 0,1,11,124,1397,15739,177320,1997737,22507067,253570948,2856801629,

%T 32185530763,362611243280,4085280268369,46025916681899,

%U 518540924305996,5842027917411653,65817929864446171,741523312261142840,8354210224465909753

%N a(n) = 11*a(n-1) + 3*a(n-2).

%H Vincenzo Librandi, <a href="/A015594/b015594.txt">Table of n, a(n) for n = 0..900</a>

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (11,3).

%F G.f.: x/(1 - 11*x - 3*x^2). - _Zerinvary Lajos_, Dec 20 2008

%p a:=proc(n) option remember; if n=0 then 0 elif n=1 then 1 else 11*a(n-1)+3*a(n-2); fi; end: seq(a(n), n=0..30); # _Wesley Ivan Hurt_, Jan 24 2017

%t Join[{a=0,b=1},Table[c=11*b+3*a;a=b;b=c,{n,60}]] (* _Vladimir Joseph Stephan Orlovsky_, Jan 31 2011 *)

%t LinearRecurrence[{11, 3}, {0, 1}, 30] (* _Vincenzo Librandi_, Nov 22 2012 *)

%o (Sage) [lucas_number1(n,11,-3) for n in range(0, 18)] # _Zerinvary Lajos_, Apr 27 2009

%o (Magma) [n le 2 select n-1 else 11*Self(n-1) + 3*Self(n-2): n in [1..30]]; // _Vincenzo Librandi_, Nov 22 2012

%K nonn,easy

%O 0,3

%A _Olivier Gérard_

%E Entries verified by Neven Juric (neven.juric(AT)apis-it.hr), Jan 28 2008