login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 9*a(n-1) + 5*a(n-2).
3

%I #40 Dec 30 2023 23:41:46

%S 0,1,9,86,819,7801,74304,707741,6741189,64209406,611590599,5825362421,

%T 55486214784,528502745161,5033955780369,47948115749126,

%U 456702820643979,4350065964541441,41434107784092864,394657299879542981,3759086237836351149,35805062639924875246

%N a(n) = 9*a(n-1) + 5*a(n-2).

%C A linear 2nd-order recurrence.

%H Vincenzo Librandi, <a href="/A015581/b015581.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (9,5).

%F G.f.: x/(1 - 9*x - 5*x^2). - _R. J. Mathar_, Dec 02 2007

%t Join[{a=0,b=1},Table[c=9*b+5*a;a=b;b=c,{n,60}]] (* _Vladimir Joseph Stephan Orlovsky_, Jan 27 2011 *)

%t LinearRecurrence[{9, 5}, {0, 1}, 30] (* _Vincenzo Librandi_, Nov 15 2012 *)

%o (Sage) [lucas_number1(n,9,-5) for n in range(0, 19)] # _Zerinvary Lajos_, Apr 26 2009

%o (Magma) [n le 2 select n-1 else 9*Self(n-1) + 5*Self(n-2): n in [1..30]]; // _Vincenzo Librandi_, Nov 15 2012

%o (PARI) x='x+O('x^30); concat([0], Vec(x/(1-9*x-5*x^2))) \\ _G. C. Greubel_, Jan 06 2018

%Y Cf. A015579, A099371.

%K nonn,easy

%O 0,3

%A _Olivier Gérard_

%E Extended by _T. D. Noe_, May 23 2011